| 研究生: |
黃子亘 Zi-Xuan Huang |
|---|---|
| 論文名稱: |
具抑制交互穩壓效應與強化輸出驅動能力之單電感雙輸出降壓轉換器 Single – Inductor Dual – Output Buck Converter with Cross – Regulation Reduction and Enhanced Output Driving Capability |
| 指導教授: |
鄭國興
Kuo-Hsing Cheng |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 106 |
| 中文關鍵詞: | 單電感雙輸出降壓轉換器 、交互穩壓效應 、自適應路徑選擇器 、輸出電流補償器 |
| 外文關鍵詞: | Single-inductor dual-output (SIDO) buck converter, Cross-Regulation, adaptive path selector, output current compensator |
| 相關次數: | 點閱:6 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出一個輸入電壓 3.3 V、輸出電壓 1 V 與 1.2 V、具抑制交互穩壓效應與強化輸出驅動能力之單電感雙輸出降壓轉換器。本設計使用分時多工控制,並操作在連續導通模式,這使得電路在系統分析上能更加的直觀,且能承受較大的輸出電流負載。而為了改善單電感雙輸出轉換器最常會被討論的交互穩壓效應,本論文提出了 自適應的路徑選擇器以及輸出電流補償器,藉由偵測輸出電壓漣波以及電壓位準,電路即可判斷出兩輸出端的負載大小並分配電感電流給予兩輸出端,若其中有輸出因為電流不足而產生壓降時,輸出電流補償器就會為其補充所需電流,藉此改善交互穩壓效應的產生。
本論文之單電感雙輸出降壓轉換器使用 180 nm 3.3 V CMOS製程實現晶片。輸入電壓為 3.3 V,擁有兩個電壓輸出 1 V 與 1.2 V,操作頻率為 1 MHz,其中透過輸出電流補償機制,電路的交互穩壓效應改善量最低可達 65.3 %,而兩輸出端各自的供應負載電流範圍為 50 mA ~ 150 mA,晶片量測效率78.5 %,負載調節度 0.75 mV/mA,晶片面積則是 1.94 mm2。
A single – inductor dual – output ( SIDO ) buck converter with Cross – Regulation Reduction and Enhanced Output Driving Capability has been presented in this thesis, which provides two voltage outputs 1 V and 1.2 V under 3.3 V supply voltage. Time – multiplexing control in continuous conduction mode has been used in this design, as a result, this circuit can be simpler for system analysis and support larger load current. To improve the cross – regulation, which has been discussed often in the SIDO converters, adaptive path selector and output current compensator have been proposed in this thesis. By sensing the output voltage ripple and voltage level, the circuit can compare the load current of the two outputs, and distribute inductor current for the outputs. When a voltage drop has occurred at the one of the output, which causes by insufficient output current, the output current compensator will compensate it. This method can improve the cross – regulation efficiently.
The proposed SIDO buck converter has been fabricated in 180nm 3.3 V CMOS process, with two voltage outputs 1 V and 1.2 V under 3.3 V supply voltage at 1 MHz operating frequency. By the output current compensation, the cross – regulation improvement of the circuit can achieve 65.3 %. The load current range of the each output is 50 mA to 150 mA. The efficiency and the load regulation of the chip are 78.5 % and 0.75 mV/mA. The chip area is 1.94 mm2.
[1] D. Ma and R. Bondade, “Enabling power-efficient DVFS operations on silicon,” IEEE Circuits Syst. Mag., vol. 10, no. 1, pp. 14–29, 1st Quarter, 2010.
[2] M.-H. Huang and K.-H. Chen, “Single-inductor multi-output (SIMO) DC–DC converters with high light–load efficiency and minimized cross-regulation for portable devices,” IEEE J. Solid-State Circuits, vol. 44, no. 4, pp. 1099–1111, Apr. 2009.
[3] Ridley, R. B., “A New Continuous-Time Model for Current-Mode Control with Constant On-Time, Constant Off-Time, and Discontinuous Conduction Mode,” IEEE Power Electronics Specialists Conference Record, San Antonio, Texas, June 1990, pp. 382-389
[4] R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics. Norwell, MA:Kluwer,2001
[5] W.-H. Ki and D. Ma, “Single-Inductor Multiple-Output Switching Converters, ” in Proc. Power Electronic Specialists Conference, 2001, pp. 226-231.
[6] D. Kwon, and G. A. Rincón-Mora, “Single-Inductor-Multiple-Output Switching DC-DC Converters, ” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 56, pp. 614-618, Aug. 2009.
[7] D. Ma, W.-H. Ki, C.-Y. Tsui, and P. K. T. Mok, “Single-inductor multiple-output switching converters with time-multiplexing control in discontinuous conduction mode,” IEEE J. Solid-State Circuits, vol. 38, no.1, pp. 89–100, Jan. 2003.
[8] H.-P. Le, C.-S. Chae, K.-C. Lee, S.-W. Wang, G.-H. Cho, and G.-H. Cho, “A single-inductor switching DC-DC converter with five outputs and ordered power-distributive control,” IEEE J. Solid-State Circuits, vol. 42, no. 12, pp. 2706–2714, Dec. 2007.
[9] D. Ma, W.-H. Ki, and C.-Y. Tsui, “A pseudo-CCM/DCM SIMO switching converter with freewheel switching,” IEEE J. Solid-State Circuits, vol. 38, no. 6, pp. 1007–1014, Jun. 2003.
[10] X. Jing, P. K. T. Mok, and M.-C. Lee, “A wide-load-range constant charge- auto-hopping-control single-inductor-dual-output boost regulator with minimized cross-regulation,” IEEE J. Solid-State Circuits, vol. 46, no. 10, pp. 2350–2362, Oct. 2011.
[11] Y.-H. Lee, T.-C. Huang, Y.-Y. Yang, W.-S. Chou, K.-H. Chen, C.-C. Huang, and Y.-H. Lin, “Minimized transient and steady-state cross regulation in 55-nm CMOS single-inductor dual-output (SIDO) step down DC-DC converter,” IEEE J. Solid-State Circuits, vol. 46, no. 11, pp.2488-2499, Nov. 2011.
[12] G. A. Rincón-Mora, P. E. Allen, ”A Low-voltage, low quiescent current, low drop-out regulator,” IEEE J. Solid-State Circuits, vol. 33, no. 1, pp. 36-44, Jan 1998.
[13] C.-F. Lee and P. K. T. Mok ”A monolithic current-mode CMOS DC-DC Converter with On-Chip Current Sensing Technique,” IEEE J. Solid-State Circuits Vol. 39, no 1, pp.3–14, Jan. 2004.
[14] C.-H. Chang and Robert, C.-Chang, “A Novel Current Sensing Circuit for a Current-Mode Control CMOS DC-DC Buck Converter,” IEEE VLSI-TSA International Symposium on VLSI Design, Automation & Test, pp.120 – 123 April
[15] Denier, “Analysis and design of an ultralow-power CMOS relaxation oscillator,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 57, no. 8, pp. 1973–1982, Aug. 2010.
[16] Y. Zhang and D. Ma,” A Fast-Response Hybrid SIMO Power Converter with Adaptive Current Compensation and Minimized Cross-Regulation,” IEEE J. Solid-State Circuits , vol. 49 , no. 5 , pp. 1242-1255 , May 2014.
[17] J.-Jia and K.-N. Leung, “Digital-control single-inductor triple-output DC–DC converter with pre-sub-period inductor-current control,” IEEE Trans. Power Electron., vol. 27, no. 4, pp. 2028–2042, Apr. 2012.
[18] Y.-J. Woo, H.-P. Le, G.-H. Cho, G.-H. Cho, and S.-I. Kim, “Load independent control of switching DC-DC converters with freewheeling current feedback,” IEEE J. Solid-State Circuits, vol. 43, no. 12, pp. 2798–2808, Dec. 2008.
[19] W.-Xu, Y.-Li, X.-Gong, and Z.-Hong, “A dual-mode single-inductor dual-output switching converter with small ripple,” IEEE Trans. Power Electron., vol. 25, no. 3, pp. 614–623, Mar. 2010.
[20] D. J. Allstot, “A precision Variable-Supply CMOS Comparator,” IEEE J.Solid-State Circuits,Vol.SC-17,pp1080-1087,Dec.1982
[21] W.-Sun, C.-Han, M.-Yang, S.-Xu, and S.-Lu ,“A Ripple Control Dual-Mode Single-Inductor Dual-Output Buck Converter With Fast Transient Response,” IEEE Trans. Very Large Scale Integr. Syst. , pp. 1–11 , 2014.
[22] C.-S. Chae, H.-P. Le, K.-C. Lee, G.-H. Cho, and G.-H. Cho, “A single inductor step-up DC-DC switching converter with bipolar outputs for active matrix OLED mobile display panels,” IEEE J. Solid-State Circuits, vol. 44, no. 2, pp. 509–524, Feb. 2009.
[23] T. Li, “Single inductor multiple output boost regulator,” in U.S. Patent 6,075,295, July 22, 2000
[24] W.-H. Chang, J.-H. Wang, and C.-H. Tasi, “A peak-current controlled single-inductor dual output DC-DC buck converter with a time-multiplexing scheme,” in Proc. IEEE Int. Symp. VLSI Design, Automation and Test, Apr. 2010, pp. 331–334.
[25] K.-N. Leung, Philip K. T. Mok, “A Sub-1-V 15-ppm/ C CMOS Bandgap Voltage Reference Without Requiring Low Threshold Voltage Device,’’ IEEE J. Solid-State Circuits , Vol 37,pp.526-530, April 2002.