跳到主要內容

簡易檢索 / 詳目顯示

研究生: 宋盈進
Ying-Chin Sung
論文名稱: 以光譜學方法再探討含銪鋱配位聚合物內能量轉移機制
指導教授: 張伯琛
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學學系
Department of Chemistry
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 83
中文關鍵詞: 光譜鑭系元素能量轉移
相關次數: 點閱:22下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文使用中溫水熱法合成含有不同比例之Eu3+和Tb3+組成配位中心以及1, 4-cyclohexanedicarboxylate (C8H10O4, CHDC)組成的配位聚合物,表示為R2(CHDC)3。合成之晶體以單晶及粉末X光繞射鑑定其結構及純度,感應耦合電漿原子發射光譜分析儀(ICP-AES)可以定量其不同配位中心之比例。本論文主要利用光致放光光譜、激發光譜及時間解析光譜再探討EuxTb2-x(CHDC)3一系列樣品的能量轉移機制與速率。由光譜分析確認了EuxTb2-x(CHDC)3樣品中,Tb3+傳遞能量給Eu3+是以上能階轉移的機制傳遞能量。本論文參考EuxTb2-x(CHDC)3之Eu3+訊號上升時間資訊後,對不同激發波長之Tb3+放光衰退時間進行動力學模型的分析,藉由分析數據得到能量轉移速率常數與相關物理參數,發現其Tb3+- Tb3+之能量轉移速率有極值,並成功地解釋Tb3+→Eu3+之能量轉移效率。


    This work adopted the mid-temperature hydrothermal method to synthesize the coordination polymers with different compositions of Eu3+ and Tb3+ as the coordination center and 1,4-cyclohexanedicarboxylate (C8H10O4, CHDC) as the ligands. Their structure and purity were verified by single crystal and powder X-ray diffraction data and the exact composition of Eu3+ and Tb3+ was determined by the Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES). Photoluminescence, excitation, and time-resolved spectra of these EuxTb2-x(CHDC)3 compounds were obtained for re-investigating the energy transfer mechanisms and rates. The analysis of spectroscopic data indicates that the energy transfer from Tb3+ to Eu3+ is an upper state energy migration instead of photon energy transfer process. Moreover, the emission decay curves of Tb3+ and the rising curves of Eu3+ at different excitation wavelengths were acquired and analyzed by kinetics models. These results show there is a concentration limitation for energy transfer efficiency and our model successfully explains the observed Tb3+→Eu3+ relative energy transfer efficiency.

    中文摘要 I 英文摘要 II 謝誌 III 目錄 IV 圖目錄 VIII 表目錄 XI 第一章 緒論 1 1-1 螢光粉發展 1 1-2 稀土元素與鑭系元素 3 1-3 鑭系元素之放光原理 4 1-3-1 銪離子之放光 5 1-3-2 鋱離子之放光 8 1-4 先前研究 9 1-5 研究目標 13 第二章 實驗 14 2-1 實驗目標 14 2-2 合成方法 15 2-2-1 中溫水熱合成法 15 2-2-2 藥品使用 17 2-2-3 R2(CHDC)3晶體合成 17 2-3 樣品之鑑定 18 2-3-1單晶X光繞射實驗 18 2-3-2粉末X光繞射實驗 20 2-3-3 感應耦合電漿原子發射光譜 20 2-4 光譜技術簡介 21 2-4-1 吸收光譜 21 2-4-2 放射光譜 22 2-5 光譜量測元件 23 2-5-1 光源 23 2-5-2 單光儀 24 2-5-3 偵測器 25 2-5-4 示波器 27 2-6 光譜技術介紹與儀器架設 27 2-6-1 光致放光光譜 27 2-6-2 激發光譜 29 2-6-3 時間解析光譜 30 第三章 結果與討論 32 3-1 R2(CHDC)3 32 3-2 晶體鑑定 32 3-3 晶體結構 34 3-4 光致放光光譜 36 3-5 激發光譜 37 3-6 Tb3+與Eu3+間能量轉移機制 38 3-7 能量轉移機制介紹 40 3-8 光譜重疊度 41 3-9 484 nm激發之Tb3+放光衰退曲線 43 3-10放光光譜差異探討 44 3-11不同化合物激發光譜 46 3-12更高激發波長之差異 47 3-12-1 同光源激發之不同比例EuxTb2-x(CHDC)3 47 3-12-2 不同光源激發之EuxTb2-x(CHDC)3 49 3-13 Tb3+放光衰退曲線之動力學模型 50 3-14 Tb3+放光衰退曲線分析 52 3-15 有效作用距離RS 57 第四章 結論 63 參考文獻 65

    1. Evans, R. C.; Carlos, L. D.; Douglas, P.; Rocha, J. Tuning the emission colour in mixed lanthanide microporous silicates: energy transfer, composition and chromaticity. J. Mater. Chem. 2008, 18, 1100-1107.
    2. Carnall, W. T.; Goodman, G. L.; Rajnak, K.; Rana, R. S. A systematic analysis of the spectra of the lanthanides doped into single crystal LaF3.
    J. Chem. Phys. 1989, 90, 3443-3457.
    3. An, Y.; Schramm, G. E.; Berry, M. T. Ligand-to-metal charge-transfer quenching of the Eu3+ (5D1) state in europium-doped tris (2,2,6,6-tetramethyl-3,5-heptanedionato)gadolinium (III). J. Lumin. 2002, 97, 7-12.
    4. Carlos L. D.; Videria A. L. L. Emission spectra and local symmetry of the Eu3+ ion in polymer electrolytes. Phys. Rev. B 1994, 49, 11721-11727.
    5. Blasse, G.; Grabmaier, B. C. Luminescence Materials 1994, Springer-Verlag, New York, U.S.A.
    6. Huber, G.; Syassen, K.; Holzapfel, W. B. Pressure dependence of 4f levels in europium pentaphosphate up to 400 kbar. Phys. Rev. B 1977, 15, 5123-5128.
    7. Cotton, S, Dr. Lanthanide and Actinide Chemistry 2006, John Wiley & Sons, Inc., Chichester, England.
    8. 陳孟琳, 國立中央大學化學系碩士論文. (2013).
    9. 蕭郁如, 國立中央大學化學系碩士論文. (2014).
    10. 林予晴, 國立中央大學化學系碩士論文. (2016).
    11. Ferreira, A.; Ananias, D.; Carlos, L. D.; Morais, C. M.; Rocha, J. Novel microporous lanthanide silicates with tobermorite-like structure. J. Am. Chem. Soc. 2003, 125, 14573-14579.
    12. Alice, D.; David, R. A.. Effect of high pressure on the crystal structures of polymorphs of glycine. Cryst. Growth Des. 2005, 5, 1415-1427.
    13. Barbara, M. W. The flux growth of single crystals of rare earth perovskites (orthoferrites, orthochromites and aluminates) J. Cryst. Growth 1969, 5, 323-328.
    14. Masanobu, N.; Kyouhei, W. Grain size control of LiMn2O4 cathode material using microwave synthesis method. Solid State Ionics 2003, 164, 35-42.
    15. Jin, H. L; Kyung, H. K. Electrical and optical properties of ZnO transparent conducting films by the sol–gel method. J. Cryst. Growth. 2003, 247, 119-125.
    16. 陳逸翔, 國立中央大學化學系碩士論文. (2012).
    17. Ramya, A. R.; Sharma, D.; Natarajan, S.; M. L. P. Reddy, M. L. P. Inorg.
    Chem. 2012, 51, 8818.
    18. Pavitra, E.; Raju, G. S. R.; Ko, Y. H.; Yu, J. S. Phys. Chem. Chem. Phys.
    2012, 14, 11296.
    19. Blasse, G. Luminescence of inorganic solids: from isolated centres to concentrated systems. Prog. Solid St. Chem. 1988, 18, 79-171.
    20. Yokota, M.; Tanimoto, O. Effects of diffusion on energy transfer by resonance. J. Phys. Soc. Jpn. 1967, 22, 779-784.
    21. Kellendonk, F.; Blasse, G. Luminescence and energy transfer in EuAl3B4O12. J. Chem. Phys. 1981, 75, 561-571.
    22. Wu, Z. C.; Shi, J. X.; Wang, J.; Gong, M. L.; Su, Q. A novel blue-emitting phosphor LiSrPO4: Eu2+ for white LEDs. J. Solid State Chem. 2006, 179, 2356-2360.

    QR CODE
    :::