| 研究生: |
朱奇祐 Chi-Yu Chu |
|---|---|
| 論文名稱: |
作為高開路電壓的反式錫鈣鈦礦太陽能電池之WO3電洞傳遞層的研究 |
| 指導教授: |
吳春桂
Chun-Guey Wu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 134 |
| 中文關鍵詞: | 錫鈣鈦礦 、太陽能電池 |
| 外文關鍵詞: | tin perovskite, solar cells |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
反式錫鈣鈦礦太陽能電池中錫鈣鈦礦層(Tin Perovskite簡稱TPsk)是沉積在電洞傳遞層(Hole transport layer簡稱HTL)上,HTL的品質將會影響TPsk的沉積與品質。本研究以熱蒸鍍的方式製備WO3作為反式錫鈣鈦礦太陽能電池的HTL,WO3的價帶能(-5.33 eV)與本實驗所使用TPsk (FA0.98EDA0.01SnI3,價帶能為-5.57 eV)之能量差比PEDOT:PSS的價帶能(-5.15 eV)與TPsk之能量差小,因此以WO3為HTL時,電洞在元件內傳輸時的能量損失較少,所組裝元件有較大的開路電壓(Open circuit voltage,Voc)及光電轉換效率(Power conversion efficiency,PCE),以WO3及PEDOT:PSS膜作為HTL所組裝元件的Voc分別為0.59 V和0.53 V,最高PCE則分別為9.44%及8.93%。WO3膜為HTL所組裝的元件在手套箱中經2520小時仍可維持原效率的84% ,而PEDOT:PSS膜為HTL所組裝的元件在相同保存條件下經2520小時僅維持原效率67%。而元件的熱穩定性測試中,WO3膜為HTL所組裝的元件在手套箱中加熱60C經2小時仍可維持原效率的72%,而PEDOT:PSS膜為HTL所組裝的元件在相同測試條件下僅維持原效率58%。WO3膜可經UV/O3後處理提高膜與TPsk前驅溶液的相容性,使沉積其上的TPsk品質變好,由SEM表面形貌圖可看見沉積在WO3的錫鈣鈦礦膜顆粒較大且平整。時間解析螢光光譜也顯示TPsk沉積在WO3膜上的載子生命週期比沉積在PEDOT:PSS上短,意味著WO3膜比PEDOT:PSS能更快速的將電洞由TPsk萃取出來並傳遞至陽極。
In inverted tin perovskite solar cells (referred as TPSCs), the tin perovskite layer (referred as TPsk) is deposited on top of the hole transport layer (referred as HTL). Therefore the quality of the HTL will be effected by the deposition methods and the quality of the resulting TPsk layer. In this study, WO3 prepared by thermal evaporation was used as an HTL for inverted tin perovskite solar cells. The valence band energy of WO3 (-5.33 eV) closer (compared to the generally used PEDOT:PSS with a valence band energy of -5.15 eV) to that of TPsk (FA0.98EDA0.01SnI3 with the valence band energy of -5.57 eV) used in this experiment. Therefor WO3 can be a better HTL than PEDOT:PSS. The Voc and PCE of TPSCs based on WO3 and PEDOT:PSS HTLs are 0.59 V and 0.53 V, 9.44% and 8.93% respectively. Without packing, the TPSC based on WO3 HTL can maintain 84% of the original efficiency after 2520 hours in the glove box, while that assembled with PEDOT:PSS HTL 33% of the original efficiency lost under the same test conditions. When the cells were heated at 60oC in a glove box, the TPSCs assembled with WO3 HTL can maintain 72% of the original efficiency after heating for 2 hours, while the TPSC based on PEDOT:PSS HTL can only maintain 58% of the original efficiency. SEM surface topography revealed that the tin perovskite grains deposited on WO3 are larger and flatter compared to those coated on top of PEDOT:PSS. Time-resolved photoluminescence spectroscopy also shows that the carrier lifetime of TPsk deposited on WO3 film is shorter than that deposited on PEDOT:PSS meaning that WO3 film can extract holes from TPsk and transfer to the anode more quickly than PEDOT:PSS.
[1] Rahul Singh, Pramod K. Singh, B. Bhattacharya, Hee-Woo Rhee. Review of current progress in inorganic hole-transport materials for perovskitesolar cells, Applied Materials Today. 2018, 14, 175-200
[2] Yan Li, Bin Ding, Qian-Qian Chu, Guan-JunYang, Mingkui Wang, Chang-Xin Li and Chang-Jiu Li. Ultra-high open-circuit voltage of perovskite solar cells induced by nucleation thermodynamics on rough substrates, Sci. Rep., 2017, 7, 46141-46151.
[3] Feng Hao, Constantinos C. Stoumpos, Duyen Hanh Cao, Robert P. H. Chang and Mercouri G. Kanatzidis. Lead-free solid-state organic-inorganic halide perovskite solar cells, Nature Photon., 2014, 8, 489-494.
[4] Mulmudi Hemant Kumar, Sabba Dharani, Wei Lin Leong, Pablo P. Boix, Rajiv Ramanujam Prabhakar, Tom Baikie, Chen Shi, Hong Ding Ramamoorthy Ramesh, Mark Asta, Michael
Gra¨tzel, Subodh G. Mhaisalkar and Nripan Mathews. LeadFree Halide Perovskite Solar Cells with High Photocurrents
Realized Through Vacancy Modulation, Adv. Mater., 2014, 26,
7122-7127.
[5] Wei-qiang Liao, De-wei Zhao, Yue Yu, Corey R. Grice, Changlei Wang, Alexander J. Cimaroli, Philip Schulz, Weiwei Meng, KaiZhu, Ren-Gen Xiong and Yanfa Yan. Lead-Free Inverted Planar Formamidinium Tin Triiodide Perovskite Solar Cells Achieving Power Conversion Efficiencies up to 6.22%, Adv. Mater., 2016, 28, 9333-9340.
[6] Bin-Bin Yu, Zhenhua Chen, Yudong Zhu, Yiyu Wang, Bing Han, Guocong Chen, Xusheng Zhang, Zheng Du, and Zhubing He.
Heterogeneous 2D/3D Tin-Halides Perovskite Solar Cells with
Certified Conversion Efficiency Breaking 14%, Adv. Funct.
Mater. 2021, 33, 2102055-2102065.
[7] Min Chen, Qing-shun Dong, Felix T. Eickemeyer, Yu-hang Liu, Zheng-hong Dai, Alexander D. Carl, Behzad Bahrami, Ashraful H. Chowdhury, Ronald L. Grimm, Yan-tao Shi, Qi-quan Qiao, Shaik Mohammed Zakeeruddin, Michael Gratzel, and Nitin P. Padture. High-Performance Lead-Free Solar Cells Based on TinHalide Perovskite Thin Films Functionalized by a Divalent
Organic Cation, ACS Energy Lett., 2020, 5, 2223-2230
[8] Zong-long Zhu, Chu-Chen Chueh, Nan Li, Cheng-yi Mao, and
Alex K.-Y. Jen. Realizing Efficient Lead-free Formamidium Tin Triiodide Perovskite Solar Cells via a Sequential Deposition Route, Adv. Mater., 2017, 30, 1703800.
[9] Seon Joo Lee, Seong Sik Shin, Young Chan Kim, Dasom Kim,
Tae Kyu Ahn, Jun Hong Noh, Jangwon Seo and Sang Il Seok.
Fabrication of Efficient Formamidinium Tin Iodide Perovskite
Solar Cells through SnF2-Pyrazine Complex, J. Am. Chem. Soc., 2016, 138, 3974-3977.
[10] Ju-Ho Lee, Young-Wook Noh, In-Su Jin, Sang Hyun Park and JaeWoong Jung. Efficient Perovskite Solar Cells with Negligible Hysteresis Enabled by Sol-Gel Driven Spinel Nickel Cobalt Oxide as Hole Transport Layer, J. Mater. Chem. C, 2019, 7, 7288-7298
[11] Zong-Liang Tseng, Lung-Chien Chen, Chien-Hung Chiang,
Sheng-Hsiung Chang, Cheng-Chiang Chen, Chun-Guey Wu.
Efficient inverted-type perovskite solar cells using UV-ozone treated MoOx and WOx as hole transporting layers, Sol. Energy 2016, 139, 484-488
[12] Yu-qin Liao, He-fei Liu, Wen-jia Zhou, Dong-wen Yang, Yue-qun Shang, Zhi-fang Shi, Bing-han Li, Xian-yuan Jiang, Li-jun Zhang, Li-Na Quan, Rafael Quintero-Bermudez, Brandon R. Sutherland, Qi-xi Mi, Edward H. Sargent, and Zhi-jun Ning. Highly Oriented Low-Dimensional Tin Halide Perovskites with Enhanced Stability and Photovoltaic Performance, J. Am. Chem. Soc., 2017, 139, 6693-6699
[13] Zhi-wei Li. Stable Perovskite Solar Cells Based on WO3
Nanocrystals as Hole Transport Layer, Chemistry Letters, 2015, 44, 1140-1141
[14] Guan-Woo Kim, Gyeon-gho Kang, Kyoung-won Choi, Hyun-tae
Choi, and Taiho Park. Solution Processable Inorganic–Organic
Double-Layered Hole Transport Layer for Highly Stable Planar
Perovskite Solar Cells, Adv. Energy Mater. 2018, 8, 1801386-
1801393
[15] Persson Kristin. Materials Data on WO3 (SG:221) by Materials
Project. 2014 Nov. DOI: 10.17188/1194398
Available from: https://materialsproject.org/materials/mp-19390/
[16] Persson Kristin. Materials Data on WO3 (SG:14) by Materials
Project. 2014 Nov. DOI: 10.17188/1193818
Available from: https://materialsproject.org/materials/mp-19033/
[17] Feng-xian Xie, Chun-Chao Chen, Yong-zhen Wu, Xing Li, Molang Cai, Xiao Liu, Xu-dong Yang, Li-yuan Han. Vertical
recrystallization for highly efficient and stable formamidiniumbased inverted-structure perovskite solar cells, Energy Environ. Sci. 2 , 10, 1942-1949.
[18] Hua Zhang, Huan Wang, Hong-mei Zhu, Chu-Chen Chueh, Wei
Chen, Shi-he Yang, Alex K.-Y. Jen. Low-Temperature SolutionProcessed CuCrO2 Hole-Transporting Layer for Efficient and Photostable Perovskite Solar Cells, Adv. Energy Mater. 2 , 8, 1702762-1702770.
[19] Chien-Hung Chiang, Cheng-Chiang Chen, Mohammad Khaja
Nazeeruddin, Chun-Guey Wu. A newly developed lithium cobalt
oxide super hydrophilic film for large area, thermally stable and highly efficient inverted perovskite solar cells, J. Mater. Chem. A, 2, 6, 13751-13760.
[20] We-ihai Sun, Yun-long Li, Sen-yun Ye, Hai-xia Rao, Wei-bo Yan, Hai-tao Peng, Yu Li, Zhi-wei Liu, Shu-feng Wang, Zhi-jian Chen, Li-xin Xiao, Zu-qiang Bian, Chun-hui Huang. High-performance inverted planar heterojunction perovskite solar cells based on a solution-processed CuOx hole transport layer, Nanoscale, 2 , 8, 10806-10813.
[21] Hai-xia Rao, Wei-hai Sun, Sen-yun Ye, Wei-bo Yan, Yun-long Li, Hai-tao Peng, Zhi-wei Liu, Zu-qiang Bian, Chun-hui Huang. Solution-Processed CuS NPs as an Inorganic Hole-Selective Contact Material for Inverted Planar Perovskite Solar Cells, ACS Appl. Mater. Interfaces, 2 , 8, 7800-7805.
[22] Wei-hai Sun, Sen-yun Ye, Hai-xiao Rao, Yun-long Li, Zhi-wei Liu, Li-xin Xiao, Zhi-jian Chen, Zu-qiang Bian, Chun-hui Huang. Room-Temperature and Solution-Processed Copper Iodide as Hole Transport Layer for Inverted Planar Perovskite Solar Cells, Nanoscale, 2 , 8, 15954-15960.
[23] Xiang Yao, Jun Qi, Wen-zhan Xu, Xiao-fang Jiang, Xiong Gong, Yong Cao. Cesium-Doped Vanadium Oxide as the Hole
Extraction Layer for Efficient Perovskite Solar Cells, ACS
Omega, 2 , 3, 1117-1125.
[24] Ke Chen, Pan Wu, Wen-qiang Yang, Rui Su, De-ying Luo, Xiaoyu Yang, Yong-guang Tu, Rui Zhu and Qi-huang Gong. Lowdimensional Perovskite Interlayer for Highly Efficient Lead-free Formamidinium Tin Iodide Perovskite Solar Cells, Nano Energy, 2, 49, 411-418.
[25] Cong Liu, Jin Tu, Xiao-tian Hu, Zeng-qi Huang, Xiang-chuan Meng, Jia Yang, Xiao-peng Duan, Li-cheng Tan, Zhen Li, and Yi-wang Chen. Enhanced Hole Transportation for Inverted TinBased Perovskite Solar Cells with High Performance and
Stability, Adv. Funct. Mater., 2019, 29, 1808059.
[26] Syed A. Moiz, Iqbal. A. Khan, Waheed A. Younis and Khasan S. Karimov. Space Charge-Limited Current Model for Polymers, Conducting Polymers, 2016, chapter 5, 91-117.
[27] Gui-ying Xu, Peng-qing Bi, Shu-hui Wang, Rong-ming Xue,
Jing-wen Zhang, Haiyang Chen, Wei-jie Chen, Xiao-tao Hao,
Yao-wen Li and Yong-fang Li. Integrating Ultrathin BulkHeterojunction Organic Semiconductor Intermediary for HighPerformance Low-Bandgap Perovskite Solar Cells with Low
Energy Loss, Adv. Funct. Mater., 2018, 28, 1804427.
[28] Qing-feng Dong, Yan-jun Fang, Yu-chuan Shao, Padhraic
Mulligan, Jie Qiu, Lei Cao, Jin-song Huang. Electron-hole
diffusion lengths > 175 mm in solution-grown CH3NH3PbI3
single crystals, Science, 2015, 347, 967-970.
[29] Cong Liu, Jin Tu, Xiao-tian Hu, Zeng-qi Huang, Xiang-chuan Meng, Jia Yang, Xiao-peng Duan, Li-cheng Tan, Zhen Li, and Yi-wang Chen. Enhanced Hole Transportation for Inverted TinBased Perovskite Solar Cells with High Performance and
Stability, Adv. Funct. Mater., 2019, 29, 1808059.
[30] Hai-mang Yi, Dian Wang, Lei-ping Duan, Faiazul Haque,
Cheng Xu, Yu Zhang, Gavin Conibeer, Ashraf Uddin. Solutionprocessed WO3 and water-free PEDOT:PSS composite for hole transport layer in conventional perovskite solar cell,
Electrochimica Acta. 2019, 319, 349-358.
[31] Xiang-yue Meng, Tian-hao Wu, Xiao Liu, Xin He, Takeshi
Noda, Yan-bo Wang, Hiroshi Segawa, and Liyuan Han. Highly
Reproducible and Efficient FASnI3 Perovskite Solar Cells
Fabricated with Volatilizable Reducing Solvent, J. Phys. Chem. Lett 2 2 , 11, 2965-2971.