| 研究生: |
寧古蘭 Lamtupa Nainggolan |
|---|---|
| 論文名稱: |
利用迴歸克利金法評估濁水溪流域地下水位與補注的時空交互作用 Implementation of Regression Kriging method to assess spatial-temporal interactions between groundwater levels and recharge in Choushui River Basin |
| 指導教授: |
倪春發
Chuen-Fa Ni |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 應用地質研究所 Graduate Institute of Applied Geology |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 英文 |
| 論文頁數: | 153 |
| 中文關鍵詞: | 普通克利金法 、迴歸克利金法 、地下水水位 、降雨 、濁水溪 |
| 外文關鍵詞: | OK, RK, Groundwater level, Precipitation, Choushui River |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了保護地下水資源,地下水位分佈的資訊極為重要。然而,濁水溪流域內地下水水位站的稀疏分佈卻限制了對於該區地下水位時空分佈的瞭解。本研究利用2006年至2015年間的地下水位月觀測資料,並結合普通克利金法(Ordinary Kriging, OK)和回歸克利金法(Regression Kriging, RK)以改善濁水溪流域地下水位的插值結果。為了瞭解降雨對地下水位的影響,RK所插值而得的地下水位將用於評估流域內地下水位與降雨間的時空交互作用,OK則僅使用於地下水位數據的插值。研究中共採用了31個地下水位站和12個雨量站觀測資料,高程和降雨量則利用RK合併為地下水位的附加變量。降雨數據由雨量站和CHIRPS觀測資料所組合而成,高程資料則由SRTM所提供。線性迴歸結果的相關係數(r)顯示,地下水位的觀測變動量中,有97%以上可以用地表高程數據來解釋,該結果表示高程數據可以作為雨量計數據的附加變量。然而由於多重線性問題,迴歸後的降雨資料不能與地下水位高程資料結合使用。相關係數、RMSE與NMSE的結果亦顯示,RK在時空上擁有比OK更強的預測能力,特別是地下水位極值的預測。空間上而言,雨季(5月和8月)地下水位升高,而地下水位擾動的最低值發生在乾季(3月和4月),多數出現於濁水溪流域的下游西部地區。此外,濕季地下水補給量與地下水水位的相關性亦相對高於乾季。濁水溪流域的地下水補給總量平均約1.40億立方公尺,為3.77億立方公尺,約為降雨量的37 % 上下。綜合上述,地下水資源的管理應集中在地下水補給率最高的濁水溪流域上游地區。
The sparse distribution of groundwater stations in Choushui River Basin limits spatial-temporal of groundwater level information in these region while this information was crucial needed to know for groundwater conservation purposes. This study reports on an effort to improve the interpolation of monthly groundwater level from groundwater stations using Ordinary Kriging (OK) and Regression Kriging (RK), spanning the period from 2006 to 2015. In order to know the effort precipitation to the groundwater level, the interpolation groundwater level of RK has used to assess spatial-temporal interactions between groundwater levels and recharge in Choushui River Basin. Therefore, a total of 31 groundwater stations and 12 rain gauges data have employed in this research. Basically, OK was done using groundwater level data only. Then, RK was tried to merge the elevation and precipitation as the additional variables for groundwater level. Precipitation data derived by combination rain gauge data and monthly rainfall of Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS). For elevation data, it was provided by Shuttle Radar Topographic Mission (SRTM). The correlation coefficient (r) of linear regression model proved that more than 97 % of the variability in groundwater levels observations can be explained by elevation data. It shows that elevation data can be included as an additional variables of rain gauges data. Conversely, precipitation data in regression model cannot be used in combination with elevation for groundwater levels due to multi-collinearity problem. The correlation coefficient (r), RMSE and NMSE reveals that RK has more robust prediction skill than OK in space and time, especially for prediction an extreme of groundwater level. Spatially, groundwater level elevated during wet months (May and August). The lowest level of groundwater level fluctuation was found to be from last of dry months (March & April), especially in the downstream west part of Choushui River Basin. Furthermore, groundwater recharge has derived and the correlation of groundwater recharge to groundwater level during the wet months was relatively higher than the dry months. Averagely, total amount of groundwater recharge at Choushui River Basin is about 1.40 billion m3 which represents 37 % of 3.77 billion m3 precipitation. As conclusion, the management of groundwater resource should be focused on the upstream area of the Choushui River Basin which has the highest groundwater recharge rate.
ABDULLAHI M.G., GARBA, L., 2015. Effect of Rainfall on Groundwater Level Fluctuation in Terengganu, Malaysia. Journal Remote Sensing and GIS 2015 4:2, DOI: 10.4172/2469-4134.1000142
ABDULLAHI, M.G., GASIM, M., JUAHIR, H., (2014). Determination of Groundwater Level Based on Rainfall Distribution: Using Integrated Modeling Techniques in Terengganu, Malaysia. Journal of Geology and Geoscience 4:187. doi:10.4172/2329-6755.1000187
AS-SYAKUR, A., TANAKA, T., PRASETIA, R., SWARDIKA, K. & KASA, I. 2011. Comparison of TRMM multi-satellite precipitation analysis (TMPA) products and daily-monthly gauge data over Bali. International Journal of Remote Sensing, 32, 8969-8982.
BISSON, R.A., LEHR, J.H., (20040. Modern Groundwater Exploration: Discovering New Water Resources in Consolidated Rocks Using Innovative Hydrogeological Concepts, Exploration, Drilling, Aquifer Testing and Management Methods. John Wiley & Sons, Inc., ISBN: 978-0-471-06460-2.
BOHLING, G. 2005. Introduction to Geostatistic and Variogram Analysis. Available: http://people.ku.edu/~gbohling/cpe940.
BURROUGH, P. A. & MCDONNEL, R. A. 1998. Principles of geographical information systems, Oxford University Press.
CAMPBELL, M. J. & GARDNER, M. J. 1988. Statistics in Medicine - Calculating Confidence-Intervals for Some Non-Parametric Analyses. British Medical Journal, 296, 1454-1456.
CHAMBERS, J. M. & HASTIE, T. J. 1992. Statistical Models in S, Wadsworth & Brooks/Cole.
EPA, 2017. https://www.epa.gov/sites/production/files/documents/groundwater.pdf [Accessed March 31th 2017].
ESRI. 2012. ArcGIS Desktop 9.3 Help [Online]. Available: http://webhelp.esri.com/arcgisdesktop/9.3/index.cfm?TopicName=welcome [Accessed March 14th 2012].
FEIDAS, H. 2010. Validation of satellite groundwater level products over Greece. Theoretical and Applied Climatology, 99, 193 - 216.
GARDNER, P.M., HEILWEIL, M. 2009. Evaluation of the Effects of Precipitation on Ground-Water Levels from Wells in Selected Alluvial Aquifers in Utah and Arizona, 1936-2005. Scientific Investigations Report 2008-5242. https://pubs.usgs.gov/sir/2008/5242/
GOOVAERTS, P. 1997. Applied Geostatistic for Natural Resources Evaluation, New York, Oxford University Press, Inc.
GOOVAERTS, P. 2000. Geostatistical approaches for incorporating elevation into the spatial interpolation of groundwater level. Journal of Hydrology, 228, 113-129.
503
HENGL, T. 2009. A Practical Guide to Geostatistical Mapping. 2nd ed. Amsterdam: University of Amsterdam.
HENGL, T., HEUVELINK, G. B. M. & ROSSITER, D. G. 2007. About regression-kriging: From equations to case studies. Computers & Geosciences, 33, 1301-1315.
HONG, Y., ADLER, R.F., (2008). Estimation of global SCS curve numbers using satellite remote sensing and geospatial data. Journal International Journal of Remote Sensing, 2, 2,471-477. https://doi.org/10.1080/01431160701264292
ISAAKS, E. H. & SRIVASTAVA, R. M. 1989. Applied Geostatistic, New York, , Oxford University Press.
KAO, Y.H., LIU, C.H., WANG, S.H., LEE, C.H., (2012). Estimating mountain block recharge to downstream alluvial aquifers from standard methods. Journal of Hydrology. 426–427, 93-102. https://doi.org/10.1016/j.jhydrol.2012.01.016.
KARL, J. W. 2010. Spatial Predictions of Cover Attributes of Rangeland Ecosystems Using Regression Kriging and Remote Sensing. Rangeland Ecology & Management, 63, 335-349.
LI, J. & HEAP, D. 2008. A Review of Spatial Interpolation Methods for Environmental Scientists.
LIU, R. CHEN, Y. SUN, C. ZHANG, P. WANG, J. Yu, W. SHEN, Z. (2014) Uncertainty analysis of total phosphorus spatial-temporal variations in the Yangtze River Estuary using different interpolation methods. Mar Pollut Bull 86:68–75. doi:10.1016/j.marpolbul.2014.07.041
LIU, C.H., NI, C.F., CHANG, C.P., YEN, J.Y., HUNG, W.C. (2015) Combination with precise leveling and PSInSAR observations to quantify pumping-induced land subsidence in central Taiwan. Proceedings. IAHS, 372, 77-82, 2015.
MAJANI, B. S. 2007. Analysis of External Drift Kriging Algorithm with application to precipitation estimation in complex orography. Master of Geo-information Sciences, International Institute for Geo-information Science and Earth Observation.
MONKHOUSE, F. 1959. Principles of Physical Geography, London, University of London Press Ltd.
MOSCA, S., GRAZIANI, G., KLUG, W., BELLASIO, R. & BIANCONI, B. 1998. A statistical methodology for the evaluation of long-range dispersion models: an application to the exercise. Atmospheric Environment, 32, 4307- 4324.
PAL, B., SAMANTA, S., (2014). Surface runoff estimation and mapping using Remote Sensing and Geographic Information System. International Journal of Advances in Science and Technology, Vol. 3, No. 3, 2011.
SASAKI, H. AND KURIHARA, K. 2008. Relationship between Precipitation and Elevation in the Present Climate Reproduced by the Non-hydrostatic Regional Climate Model. SOLA, 2008, Vol. 4, 109‒112, doi:10.2151/sola.2008‒028
SINGH, P. & KUMAR, N. 1997. Effect of orography on precipitation in the western Himalayan region. Journal of Hydrology, 199, 183-206.
SHUI-HUI LIN. 2010. Groundwater level Spatial Interpolation Using Hypersurface Regression Kriging. Master Thesis. Master of Applied Geology, Graduate Institute of Earth Science, National Central University.
SPLASHMAN. 2011. Types of groundwater level [Online]. Available: http://splashman.phoenix.wikispaces.net/file/view/types_groundwater level.gif/203391180/types_groundwater level.gif [Accessed March 13th 2012].
STATSOFT. 2012. Multiple Regression [Online]. Available: http://www.statsoft.com/textbook/multiple-regression/ [Accessed March 13th 2012].
THOMAS, B.F.; BEHRANGI, A.; FAMIGLIETTI, J.S. 2016. Precipitation Intensity Effects on Groundwater Recharge in the Southwestern United States. Water 2016, 8, 90.
THOMPSON, JC. MOORE, RD. 1996. Relations between topography and water table depth in a shallow forest soil. Hydrological Processes, PROCESSES, VOL. 10, 1513-1525 (1996) DOI: 10.1002/(SICI)1099-1085(199611)10:11<1513::AID-HYP398>3.0.CO;2-V.
WRA. http://eng.wra.gov.tw/ct.asp?xItem=48254&CtNode=9667 {Accessed by 24 February 2017]
https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb1044171.pdf {Accessed by 18 December 2017]
http://www.statisticssolutions.com/multicollinearity/ {Accessed by 20 December 2017]
http://desktop.arcgis.com/en/arcmap/latest/extensions/geostatistical-analyst/performing-cross-validation-and-validation.htm {Accessed by 28 December 2017]
https://water.usgs.gov/edu/watercyclerecharge.html {Accessed by 29 December 2017]
https://yceo.yale.edu/modis-land-cover-product-mcd12q1 {Accessed by 31 December 2017]