跳到主要內容

簡易檢索 / 詳目顯示

研究生: 王晨旭
Chen-Hsu WANG
論文名稱: 以穿戴式隨身裝置引導呼吸訓練作為心血管疾病自主神經調節的輔助治療模式
Wearable Device Guided Breathing Training Exercise as an Auxiliary Management of Autonomic Nervous Modulation in Cardiovascular Disease
指導教授: 羅孟宗
Men-Tzung LO
林澂
Chen LIN
口試委員:
學位類別: 博士
Doctor
系所名稱: 生醫理工學院 - 跨領域轉譯醫學研究所
Institute of Translational and Interdisciplinary Medicine
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 118
中文關鍵詞: 穿戴式隨身裝置呼吸訓練心血管疾病自主神經調節
外文關鍵詞: Wearable Device, Breathing Training Exercise, Cardiovascular Disease, Autonomic Nervous Modulation
相關次數: 點閱:22下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討了在心血管疾病族群中,其自主神經系統功能、慢性發炎和血管硬化之間的關係,並評估了以穿戴式隨身裝置上的應用程式所引導的呼吸訓練模式作為輔助治療的有效性。透過四個實驗項目,我們納入了130名慢性心血管疾病病人族群和34名健康對照者,使用穿戴式心電圖裝置評估受試者的自主神經功能。蒐集以心率變異度為基本的指標參數加以推演計算,包括生理年齡及其綜合健康指數。
    結果顯示,與單純高血壓病人相比,合併高血壓和糖尿病病人的生理年齡指標顯著升高,而綜合健康指數則顯著降低。心臟衰竭病人在接受呼吸訓練輔助治療後,以上兩項參數均顯著改善。三個月的呼吸訓練顯著降低了血壓及腫瘤壞死因子-α (TNF-α) 數值,但壓力反射敏感性的改善並非持久的。綜合健康指數被證明比傳統的心率變異度參數指標測量方法更可靠、更靈敏,可用於短期自主神經評估。
    以上結果顯示,穿戴式心電圖監測隨身裝置結合呼吸訓練模式,為慢性心血管疾病的風險管理和治療監測提供了一種非侵入性的持續方向,並為疾病初期之亞健康族群的健康促進提供了可行的未來前景。


    This study investigated the relationship between autonomic nervous system function, chronic inflammation, and vascular stiffness in cardiovascular disease (CVD) patients, while evaluating the effectiveness of app-guided breathing training exercise as an auxiliary treatment. Through four experimental projects involving 130 CVD patients and 34 healthy controls, we assessed autonomic function using a wearable electrocardiogram (ECG) device that calculated heart rate variability (HRV) based parameters including physiological age and a comprehensive health index.
    Results showed that patients with hypertension and diabetes had significantly higher physiological age and lower comprehensive index compared to hypertension only patients. Heart failure patients demonstrated significant improvement in both parameters following treatment. Three months of breathing training significantly reduced blood pressure and tumor necrosis factor-α levels, though baroreflex sensitivity improvements were not sustained. The comprehensive index proved more reliable and sensitive than traditional HRV measures for short-term autonomic assessment.
    These findings suggest that wearable ECG monitoring combined with breathing training offers a promising non-invasive approach for cardiovascular risk management and treatment monitoring. It could be provided a sustained direction for health promotion in subclinical population.

    中文摘要..................................................i Abstract.................................................ii 致謝.....................................................iii Table of Contents........................................iv List of Tables..........................................viii List of Figures..........................................ix List of Abbreviations....................................xi Chapter 1: Introduction....................................1 The Global Burden of Hypertension and Cardiovascular Disease....................................................1 Chapter 2: Literature Review...............................3 2.1 Autonomic Nervous System Dysfunction in Cardiovascular Disease....................................................3 2.2 The Inflammatory Paradigm in Cardiovascular Disease....4 2.3 Hypertension as a Primary Risk Factor for Heart Failure....................................................6 2.4 Neurohormonal Mechanisms Linking Hypertension and Heart Failure....................................................8 2.5 Metabolic Dysfunction in the Hypertension-Heart Failure Continuum..................................................9 2.6 Microvascular Dysfunction and the Hypertension-Heart Failure Transition........................................10 2.7 The Role of Atrial Dysfunction in Hypertension-Related Heart Failure.............................................11 2.8 Gender and Ethnic Differences in Hypertension-Heart Failure Progression.......................................11 2.9 Prevention Strategies: Breaking the Hypertension-Heart Failure Link..............................................12 2.10 The Neuro-Immune Interface: Autonomic Regulation of Inflammation..............................................13 2.11 Heart Rate Variability: A Window into Autonomic Function..................................................14 2.12 Breathing Exercises: From Ancient Practice to Modern Medicine..................................................16 2.13 The Anti-inflammatory Potential of Breathing Exercises.................................................18 2.14 Technological Innovation: Wearable Devices in Cardiovascular Health.....................................20 Chapter 3: Study Rationale and Objectives.................22 Chapter 4: Methods........................................24 4.1 Experimental Guidelines...............................24 4.2 Experimental Projects.................................24 4.2.1 Experimental Project 1..............................24 4.2.2 Experimental Project 2..............................25 4.2.3 Experimental Project 3..............................25 4.2.4 Experimental Project 4..............................26 4.3 Device Guided Slow Breathing (DGSB) Protocol..........26 4.4 Experimental Methods and Procedures...................27 4.5 Study Protocol and Data Collection....................28 4.6 Data Analysis Methods.................................29 4.6.1 Heart Rate Variability Analysis.....................29 4.6.2 Statistical Analysis................................30 4.7 Ethical Considerations................................31 Chapter 5: Results........................................32 5.1 Experimental Project 1: Cross-sectional Study.........32 5.1.1 Data of Clinical Patient Group......................32 5.1.2 Data of Control Group...............................34 5.1.3 Characteristics of Comprehensive Parameters and Physiological Age.........................................35 5.1.4 Changes in Comprehensive Parameters and Physiological Age.......................................................36 5.1.5 Comparison of Comprehensive Index and Physiological Age.......................................................38 5.2 Experimental Project 2: Newly Diagnosed Heart Failure Follow-up Study...........................................40 5.3 Experimental Projects 3 & 4: Breathing Training as an Auxiliary Treatment.......................................41 5.3.1 Clinical Patient Data...............................41 5.3.2 The Effect of App-guided Breathing Training on Baroreflex................................................43 5.3.3 Blood Pressure Changes and Evaluation of Arteriosclerosis..........................................45 5.3.4 Changes in Autonomic Nervous Activity...............47 5.3.5 Changes in Blood Inflammatory Index.................50 Chapter 6: Discussion.....................................53 6.1 Comprehensive Analysis of Short-term Autonomic Function Assessment................................................53 6.2 Autonomic Dysfunction in Cardiovascular Disease.......55 6.3 Heart Failure and Autonomic Recovery..................57 6.4 DGSB as a Comprehensive Cardiovascular Intervention...59 6.5 The Anti-inflammatory Effects of Breathing Training...61 6.6 Correlations Between Autonomic Function and Inflammation..............................................63 6.7 Wearable Technology and Real-time Biofeedback.........65 6.8 Clinical Translation and Future Directions............67 6.9 Limitations and Methodological Considerations.........69 6.10 Integrative Perspectives: Toward Precision Cardiovascular Medicine...................................71 6.11 Implications for Public Health and Healthcare Delivery..................................................72 Chapter 7: Conclusion.....................................75 References................................................79

    1. WHO (World Health Organization). Hypertension fact sheet. 2021. Available from: https://www.who.int/news-room/fact-sheets/detail/hypertension
    2. Mills KT, Stefanescu A, He J. The global epidemiology of hypertension. Nat Rev Nephrol. 2020;16(4):223-37.
    3. Chow CK, Teo KK, Rangarajan S, Islam S, Gupta R, Avezum A, et al. Prevalence, awareness, treatment, and control of hypertension in rural and urban communities in high-, middle-, and low-income countries. JAMA. 2013;310(9):959-68.
    4. Gheorghe A, Griffiths U, Murphy A, Legido-Quigley H, Lamptey P, Perel P. The economic burden of cardiovascular disease and hypertension in low-and middle-income countries: A systematic review. BMC Public Health. 2018;18(1):975.
    5. Ibrahim MM, Damasceno A. Hypertension in developing countries. Lancet. 2012;380(9841):611-9.
    6. Oparil S, Acelajado MC, Bakris GL, Berlowitz DR, Cífková R, Dominiczak AF, et al. Hypertension. Nat Rev Dis Primers. 2018;4:18014.
    7. Touyz RM, Alves-Lopes R, Rios FJ, Camargo LL, Anagnostopoulou A, Arner A, et al. Vascular smooth muscle contraction in hypertension. Cardiovasc Res. 2018;114(4):529-39.
    8. Gimbrone MA Jr, García-Cardeña G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ Res. 2016;118(4):620-36.
    9. Rapsomaniki E, Timmis A, George J, Pujades-Rodriguez M, Shah AD, Denaxas S, et al. Blood pressure and incidence of twelve cardiovascular diseases: Lifetime risks, healthy life-years lost, and age-specific associations in 1.25 million people. Lancet. 2014;383(9932):1899-911.
    10. Goldstein DS. Differential responses of components of the autonomic nervous system. Handb Clin Neurol. 2013;117:13-22.
    11. Wehrwein EA, Orer HS, Barman SM. Overview of the anatomy, physiology, and pharmacology of the autonomic nervous system. Compr Physiol. 2016;6(3):1239-78.
    12. McCorry LK. Physiology of the autonomic nervous system. Am J Pharm Educ. 2007;71(4):78.
    13. Tank AW, Lee Wong D. Peripheral and central effects of circulating catecholamines. Compr Physiol. 2011;5(1):1-15.
    14. Gordan R, Gwathmey JK, Xie LH. Autonomic and endocrine control of cardiovascular function. World J Cardiol. 2015;7(4):204.
    15. Shaffer F, McCraty R, Zerr CL. A healthy heart is not a metronome: An integrative review of the heart's anatomy and heart rate variability. Front Psychol. 2014;5:1040.
    16. La Rovere MT, Bigger JT, Marcus FI, Mortara A, Schwartz PJ. Baroreflex sensitivity and heart-rate variability in prediction of total cardiac mortality after myocardial infarction: ATRAMI (Autonomic Tone and Reflexes After Myocardial Infarction) Investigators. Lancet. 1998;351(9101):478-84.
    17. Cohn JN, Levine TB, Olivari MT, Garberg V, Lura D, Francis GS, et al. Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N Engl J Med. 1984;311(13):819-23.
    18. Floras JS. Sympathetic nervous system activation in human heart failure: Clinical implications of an updated model. J Am Coll Cardiol. 2009;54(5):375-85.
    19. Triposkiadis F, Karayannis G, Giamouzis G, Skoularigis J, Louridas G, Butler J. The sympathetic nervous system in heart failure: Physiology, pathophysiology, and clinical implications. J Am Coll Cardiol. 2009;54(19):1747-62.
    20. Olshansky B, Sabbah HN, Hauptman PJ, Colucci WS. Parasympathetic nervous system and heart failure: Pathophysiology and potential implications for therapy. Circulation. 2008;118(8):863-71.
    21. Thayer JF, Yamamoto SS, Brosschot JF. The relationship of autonomic imbalance, heart rate variability and cardiovascular disease risk factors. Int J Cardiol. 2010;141(2):122-31.
    22. Libby P. The changing landscape of atherosclerosis. Nature. 2021;592(7855):524-33.
    23. Ridker PM. From C-reactive protein to interleukin-6 to interleukin-1: Moving upstream to identify novel targets for atheroprotection. Circ Res. 2016;118(1):145-56.
    24. Ridker PM, Danielson E, Fonseca FA, Genest J, Gotto AM Jr, Kastelein JJ, et al. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N Engl J Med. 2008;359(21):2195-207.
    25. Ridker PM. C-reactive protein and the prediction of cardiovascular events among those at intermediate risk: Moving an inflammatory hypothesis toward consensus. J Am Coll Cardiol. 2019;49(21):2129-38.
    26. Moore KJ, Sheedy FJ, Fisher EA. Macrophages in atherosclerosis: A dynamic balance. Nat Rev Immunol. 2013;13(10):709-21.
    27. Ait-Oufella H, Sage AP, Mallat Z, Tedgui A. Adaptive (T and B cells) immunity and control by dendritic cells in atherosclerosis. Circ Res. 2014;114(10):1640-60.
    28. Van Gaal LF, Mertens IL, De Block CE. Mechanisms linking obesity with cardiovascular disease. Nature. 2006;444(7121):875-80.
    29. Emerging Risk Factors Collaboration. C-reactive protein concentration and risk of coronary heart disease, stroke, and mortality: An individual participant meta-analysis. Lancet. 2010;375(9709):132-40.
    30. Swirski FK, Nahrendorf M. Leukocyte behavior in atherosclerosis, myocardial infarction, and heart failure. Science. 2013;339(6116):161-6.
    31. Levy D, Larson MG, Vasan RS, Kannel WB, Ho KK. The progression from hypertension to congestive heart failure. JAMA. 1996;275(20):1557-62.
    32. Kannel WB. Incidence and epidemiology of heart failure. Heart Fail Rev. 2000;5(2):167-73.
    33. Matsushita K, Blecker S, Pazin-Filho A, Bertoni A, Chang PP, Coresh J, et al. The association of hemoglobin A1c with incident heart failure among people without diabetes: The atherosclerosis risk in communities study. Diabetes. 2010;59(8):2020-6.
    34. Díez J, González A, López B, Querejeta R. Mechanisms of disease: Pathologic structural remodeling is more than adaptive hypertrophy in hypertensive heart disease. Nat Clin Pract Cardiovasc Med. 2005;2(4):209-16.
    35. González A, Ravassa S, López B, Moreno MU, Beaumont J, San José G, et al. Myocardial remodeling in hypertension. Hypertension. 2018;72(3):549-58.
    36. Kong P, Christia P, Frangogiannis NG. The pathogenesis of cardiac fibrosis. Cell Mol Life Sci. 2014;71(4):549-74.
    37. Schelbert EB, Fridman Y, Wong TC, Abu Daya H, Piehler KM, Kadakkal A, et al. Temporal relation between myocardial fibrosis and heart failure with preserved ejection fraction: Association with baseline disease severity and subsequent outcome. JAMA Cardiol. 2017;2(9):995-1006.
    38. Borlaug BA. Evaluation and management of heart failure with preserved ejection fraction. Nat Rev Cardiol. 2020;17(9):559-73.
    39. Slivnick J, Lampert BC. Hypertension and heart failure. Heart Fail Clin. 2019;15(4):531-41.
    40. te Riet L, van Esch JH, Roks AJ, van den Meiracker AH, Danser AH. Hypertension: Renin-angiotensin-aldosterone system alterations. Circ Res. 2015;116(6):960-75.
    41. Forrester SJ, Booz GW, Sigmund CD, Coffman TM, Kawai T, Rizzo V, et al. Angiotensin II signal transduction: An update on mechanisms of physiology and pathophysiology. Physiol Rev. 2018;98(3):1627-738.
    42. Lymperopoulos A, Rengo G, Koch WJ. Adrenergic nervous system in heart failure: Pathophysiology and therapy. Circ Res. 2013;113(6):739-53.
    43. Grassi G, Mark A, Esler M. The sympathetic nervous system alterations in human hypertension. Circ Res. 2015;116(6):976-90.
    44. Kohan DE, Rossi NF, Inscho EW, Pollock DM. Regulation of blood pressure and salt homeostasis by endothelin. Physiol Rev. 2011;91(1):1-77.
    45. Valero-Muñoz M, Li S, Wilson RM, Hulsmans M, Aprahamian T, Fuster JJ, et al. Heart failure with preserved ejection fraction induces beiging in adipose tissue. Circ Heart Fail. 2016;9(1):e002724.
    46. Perrone-Filardi P, Paolillo S, Costanzo P, Savarese G, Trimarco B, Bonow RO. The role of metabolic syndrome in heart failure. Eur Heart J. 2015;36(39):2630-4.
    47. Aroor AR, Mandavia CH, Sowers JR. Insulin resistance and heart failure: Molecular mechanisms. Heart Fail Clin. 2012;8(4):609-17.
    48. Lopaschuk GD, Karwi QG, Tian R, Wende AR, Abel ED. Cardiac energy metabolism in heart failure. Circ Res. 2021;128(10):1487-513.
    49. Brown DA, Perry JB, Allen ME, Sabbah HN, Stauffer BL, Shaikh SR, et al. Mitochondrial function as a therapeutic target in heart failure. Nat Rev Cardiol. 2017;14(4):238-50.
    50. Goldberg IJ, Trent CM, Schulze PC. Lipid metabolism and toxicity in the heart. Cell Metab. 2012;15(6):805-12.
    51. Ng AC, Delgado V, Borlaug BA, Bax JJ. Diabesity: The combined burden of obesity and diabetes on heart disease and the role of imaging. Nat Rev Cardiol. 2021;18(4):291-304.
    52. Taqueti VR, Di Carli MF. Coronary microvascular disease pathogenic mechanisms and therapeutic options: JACC state-of-the-art review. J Am Coll Cardiol. 2018;72(21):2625-41.
    53. Shah SJ, Lam CS, Svedlund S, Saraste A, Hage C, Tan RS, et al. Prevalence and correlates of coronary microvascular dysfunction in heart failure with preserved ejection fraction: PROMIS-HFpEF. Eur Heart J. 2018;39(37):3439-50.
    54. Konst RE, Guzik TJ, Kaski JC, Maas AH, Elias-Smale SE. The pathogenic role of coronary microvascular dysfunction in the setting of other cardiac or systemic conditions. Cardiovasc Res. 2020;116(4):817-28.
    55. Rush CJ, Berry C, Oldroyd KG, Rocchiccioli JP, Lindsay MM, Touyz RM, et al. Prevalence of coronary artery disease and coronary microvascular dysfunction in patients with heart failure with preserved ejection fraction. JAMA Cardiol. 2021;6(10):1130-43.
    56. Tsang TS, Barnes ME, Gersh BJ, Bailey KR, Seward JB. Left atrial volume as a morphophysiologic expression of left ventricular diastolic dysfunction and relation to cardiovascular risk burden. Am J Cardiol. 2002;90(12):1284-9.
    57. Morris DA, Belyavskiy E, Aravind-Kumar R, Kropf M, Frydas A, Braunauer K, et al. Potential usefulness and clinical relevance of adding left atrial strain to left atrial volume index in the detection of left ventricular diastolic dysfunction. JACC Cardiovasc Imaging. 2018;11(10):1405-15.
    58. Kotecha D, Piccini JP. Atrial fibrillation in heart failure: What should we do? Eur Heart J. 2015;36(46):3250-7.
    59. Carlisle MA, Fudim M, DeVore AD, Piccini JP. Heart failure and atrial fibrillation, like fire and fury. JACC Heart Fail. 2019;7(6):447-56.
    60. Beale AL, Meyer P, Marwick TH, Lam CS, Kaye DM. Sex differences in cardiovascular pathophysiology: Why women are overrepresented in heart failure with preserved ejection fraction. Circulation. 2018;138(2):198-205.
    61. Honigberg MC, Zekavat SM, Aragam K, Klarin D, Bhatt DL, Scott NS, et al. Long-term cardiovascular risk in women with hypertension during pregnancy. J Am Coll Cardiol. 2019;74(22):2743-54.
    62. Carnethon MR, Pu J, Howard G, Albert MA, Anderson CA, Bertoni AG, et al. Cardiovascular health in African Americans: A scientific statement from the American Heart Association. Circulation. 2017;136(21):e393-423.
    63. Breathett K, Sims M, Gross M, Jackson EA, Jones EJ, Navas-Acien A, et al. Cardiovascular health in American Indians and Alaska Natives: A scientific statement from the American Heart Association. Circulation. 2020;141(25):e948-59.
    64. Williamson JD, Supiano MA, Applegate WB, Berlowitz DR, Campbell RC, Chertow GM, et al. Intensive vs standard blood pressure control and cardiovascular disease outcomes in adults aged ≥75 years: A randomized clinical trial. JAMA. 2016;315(24):2673-82.
    65. Böhm M, Schumacher H, Teo KK, Lonn EM, Mahfoud F, Mann JF, et al. Achieved blood pressure and cardiovascular outcomes in high-risk patients: Results from ONTARGET and TRANSCEND trials. Lancet. 2017;389(10085):2226-37.
    66. Thomopoulos C, Parati G, Zanchetti A. Effects of blood-pressure-lowering treatment on outcome incidence in hypertension: 10 - Should blood pressure management differ in hypertensive patients with and without diabetes mellitus? Overview and meta-analyses of randomized trials. J Hypertens. 2017;35(5):922-44.
    67. Pitt B, Pfeffer MA, Assmann SF, Boineau R, Anand IS, Claggett B, et al. Spironolactone for heart failure with preserved ejection fraction. N Engl J Med. 2014;370(15):1383-92.
    68. Tracey KJ. The inflammatory reflex. Nature. 2002;420(6917):853-9.
    69. Pavlov VA, Tracey KJ. Neural regulation of immunity: Molecular mechanisms and clinical translation. Nat Neurosci. 2017;20(2):156-66.
    70. Singh P, Hawkley LC, McDade TW, Cacioppo JT, Masi CM. Autonomic tone and C-reactive protein: A prospective population-based study. Clin Auton Res. 2009;19(6):367-74.
    71. Bonaz B, Sinniger V, Pellissier S. Anti-inflammatory properties of the vagus nerve: Potential therapeutic implications of vagus nerve stimulation. J Physiol. 2016;594(20):5781-90.
    72. Pongratz G, Straub RH. The sympathetic nervous response in inflammation. Arthritis Res Ther. 2014;16(6):504.
    73. Cohen S, Janicki-Deverts D, Doyle WJ, Miller GE, Frank E, Rabin BS, et al. Chronic stress, glucocorticoid receptor resistance, inflammation, and disease risk. Proc Natl Acad Sci U S A. 2012;109(16):5995-9.
    74. Chiu IM, von Hehn CA, Woolf CJ. Neurogenic inflammation and the peripheral nervous system in host defense and immunopathology. Nat Neurosci. 2012;15(8):1063-7.
    75. Haensel A, Mills PJ, Nelesen RA, Ziegler MG, Dimsdale JE. The relationship between heart rate variability and inflammatory markers in cardiovascular diseases. Psychoneuroendocrinology. 2008;33(10):1305-12.
    76. Christensen RH, Wedell-Neergaard AS, Lehrskov LL, Legaard GE, Dorph E, Larsen MK, et al. Effect of aerobic and resistance exercise on cardiac adipose tissue: Secondary analyses from a randomized clinical trial. JAMA Cardiol. 2019;4(8):778-87.
    77. Howland RH. Vagus nerve stimulation. Curr Behav Neurosci Rep. 2014;1(2):64-73.
    78. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability: Standards of measurement, physiological interpretation and clinical use. Circulation. 1996;93(5):1043-65.
    79. Shaffer F, Ginsberg JP. An overview of heart rate variability metrics and norms. Front Public Health. 2017;5:258.
    80. Hon EH, Lee ST. Electronic evaluation of the fetal heart rate. VIII. Patterns preceding fetal death, further observations. Am J Obstet Gynecol. 1963;87:814-26.
    81. Ewing DJ, Martyn CN, Young RJ, Clarke BF. The value of cardiovascular autonomic function tests: 10 years experience in diabetes. Diabetes Care. 1985;8(5):491-8.
    82. Akselrod S, Gordon D, Ubel FA, Shannon DC, Berger AC, Cohen RJ. Power spectrum analysis of heart rate fluctuation: A quantitative probe of beat-to-beat cardiovascular control. Science. 1981;213(4504):220-2.
    83. Kleiger RE, Stein PK, Bigger JT Jr. Heart rate variability: Measurement and clinical utility. Ann Noninvasive Electrocardiol. 2005;10(1):88-101.
    84. Stein PK, Kleiger RE. Insights from the study of heart rate variability. Annu Rev Med. 1999;50(1):249-61.
    85. Kleiger RE, Miller JP, Bigger JT Jr, Moss AJ. Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. Am J Cardiol. 1987;59(4):256-62.
    86. Berntson GG, Bigger JT, Eckberg DL, Grossman P, Kaufmann PG, Malik M, et al. Heart rate variability: Origins, methods, and interpretive caveats. Psychophysiology. 1997;34(6):623-48.
    87. Billman GE. The LF/HF ratio does not accurately measure cardiac sympatho-vagal balance. Front Physiol. 2013;4:26.
    88. Goldberger AL, Amaral LA, Hausdorff JM, Ivanov PC, Peng CK, Stanley HE. Fractal dynamics in physiology: Alterations with disease and aging. Proc Natl Acad Sci U S A. 2002;99(suppl 1):2466-72.
    89. Brennan M, Palaniswami M, Kamen P. Do existing measures of Poincaré plot geometry reflect nonlinear features of heart rate variability? IEEE Trans Biomed Eng. 2001;48(11):1342-7.
    90. Costa M, Goldberger AL, Peng CK. Multiscale entropy analysis of biological signals. Phys Rev E. 2005;71(2):021906.
    91. Brown RP, Gerbarg PL. Sudarshan Kriya yogic breathing in the treatment of stress, anxiety, and depression: Part I—Neurophysiologic model. J Altern Complement Med. 2005;11(1):189-201.
    92. Sengupta P. Health impacts of yoga and pranayama: A state-of-the-art review. Int J Prev Med. 2012;3(7):444.
    93. Jerath R, Edry JW, Barnes VA, Jerath V. Physiology of long pranayamic breathing: Neural respiratory elements may provide a mechanism that explains how slow breathing shifts the autonomic nervous system. Med Hypotheses. 2006;67(3):566-71.
    94. Russo MA, Santarelli DM, O'Rourke D. The physiological effects of slow breathing in the healthy human. Breathe. 2017;13(4):298-309.
    95. Yasuma F, Hayano JI. Respiratory sinus arrhythmia: Why does the heartbeat synchronize with respiratory rhythm? Chest. 2004;125(2):683-90.
    96. Zou Y, Zhao X, Hou YY, Liu T, Wu Q, Huang YH, et al. Meta-analysis of effects of voluntary slow breathing exercises for control of heart rate and blood pressure in patients with cardiovascular diseases. Am J Cardiol. 2017;120(1):148-53.
    97. Joseph CN, Porta C, Casucci G, Casiraghi N, Maffeis M, Rossi M, et al. Slow breathing improves arterial baroreflex sensitivity and decreases blood pressure in essential hypertension. Hypertension. 2005;46(4):714-8.
    98. Bernardi L, Gabutti A, Porta C, Spicuzza L. Slow breathing reduces chemoreflex response to hypoxia and hypercapnia, and increases baroreflex sensitivity. J Hypertens. 2001;19(12):2221-9.
    99. Elliott WJ, Izzo JL Jr. Device-guided breathing to lower blood pressure: Case report and clinical overview. MedGenMed. 2006;8(3):23.
    100. Lehrer PM, Vaschillo E, Vaschillo B, Lu SE, Eckberg DL, Edelberg R, et al. Heart rate variability biofeedback increases baroreflex gain and peak expiratory flow. Psychosom Med. 2003;65(5):796-805.
    101. Schein MH, Gavish B, Herz M, Rosner-Kahana D, Naveh P, Knishkowy B, et al. Treating hypertension with a device that slows and regularises breathing: A randomised, double-blind controlled study. J Hum Hypertens. 2001;15(4):271-8.
    102. Grossman E, Grossman A, Schein MH, Zimlichman R, Gavish B. Breathing-control lowers blood pressure. J Hum Hypertens. 2001;15(4):263-9.
    103. Mahtani KR, Nunan D, Heneghan CJ. Device-guided breathing exercises in the control of human blood pressure: Systematic review and meta-analysis. J Hypertens. 2012;30(5):852-60.
    104. Brook RD, Appel LJ, Rubenfire M, Ogedegbe G, Bisognano JD, Elliott WJ, et al. Beyond medications and diet: Alternative approaches to lowering blood pressure: A scientific statement from the American Heart Association. Hypertension. 2013;61(6):1360-83.
    105. Meles E, Giannattasio C, Failla M, Gentile G, Capra A, Mancia G. Nonpharmacologic treatment of hypertension by respiratory exercise in the home setting. Am J Hypertens. 2004;17(5):370-4.
    106. Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR, et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature. 2000;405(6785):458-62.
    107. Pace TW, Negi LT, Adame DD, Cole SP, Sivilli TI, Brown TD, et al. Effect of compassion meditation on neuroendocrine, innate immune and behavioral responses to psychosocial stress. Psychoneuroendocrinology. 2009;34(1):87-98.
    108. Bower JE, Irwin MR. Mind-body therapies and control of inflammatory biology: A descriptive review. Brain Behav Immun. 2016;51:1-11.
    109. Qu S, Olafsrud SM, Meza-Zepeda LA, Saatcioglu F. Rapid gene expression changes in peripheral blood lymphocytes upon practice of a comprehensive yoga program. PLoS One. 2013;8(4):e61910.
    110. Black DS, O'Reilly GA, Olmstead R, Breen EC, Irwin MR. Mindfulness meditation and improvement in sleep quality and daytime impairment among older adults with sleep disturbances: A randomized clinical trial. JAMA Intern Med. 2015;175(4):494-501.
    111. Koopman FA, Chavan SS, Miljko S, Grazio S, Sokolovic S, Schuurman PR, et al. Vagus nerve stimulation inhibits cytokine production and attenuates disease severity in rheumatoid arthritis. Proc Natl Acad Sci U S A. 2016;113(29):8284-9.
    112. Bernardi L, Gordin D, Bordino M, Rosengård-Bärlund M, Sandelin A, Forsblom C, et al. Oxygen-induced impairment in arterial function is corrected by slow breathing in patients with type 1 diabetes. Sci Rep. 2017;7:6001.
    113. Steinhubl SR, Muse ED, Topol EJ. The emerging field of mobile health. Sci Transl Med. 2015;7(283):283rv3.
    114. Pevnick JM, Birkeland K, Zimmer R, Elad Y, Kedan I. Wearable technology for cardiology: An update and framework for the future. Trends Cardiovasc Med. 2018;28(2):144-50.
    115. Turakhia MP, Desai M, Hedlin H, Rajmane A, Talati N, Ferris T, et al. Rationale and design of a large-scale, app-based study to identify cardiac arrhythmias using a smartwatch: The Apple Heart Study. Am Heart J. 2019;207:66-75.
    116. Perez MV, Mahaffey KW, Hedlin H, Rumsfeld JS, Garcia A, Ferris T, et al. Large-scale assessment of a smartwatch to identify atrial fibrillation. N Engl J Med. 2019;381(20):1909-17.
    117. Guo Y, Wang H, Zhang H, Liu T, Liang Z, Xia Y, et al. Mobile photoplethysmographic technology to detect atrial fibrillation. J Am Coll Cardiol. 2019;74(19):2365-75.
    118. Georgiou K, Larentzakis AV, Khamis NN, Alsuhaibani GI, Alaska YA, Giallafos EJ. Can wearable devices accurately measure heart rate variability? A systematic review. Folia Med. 2018;60(1):7-20.
    119. Plews DJ, Laursen PB, Stanley J, Kilding AE, Buchheit M. Training adaptation and heart rate variability in elite endurance athletes: Opening the door to effective monitoring. Sports Med. 2013;43(9):773-81.
    120. Ribeiro AH, Ribeiro MH, Paixão GM, Oliveira DM, Gomes PR, Canazart JA, et al. Automatic diagnosis of the 12-lead ECG using a deep neural network. Nat Commun. 2020;11(1):1-9.
    121. Laborde S, Mosley E, Thayer JF. Heart rate variability and cardiac vagal tone in psychophysiological research--recommendations for experiment planning, data analysis, and data reporting. Front Psychol. 2017;8:213.
    122. Lehrer PM, Gevirtz R. Heart rate variability biofeedback: How and why does it work? Front Psychol. 2014;5:756.
    123. Edwards EA, Lumsden J, Rivas C, Steed L, Edwards LA, Thiyagarajan A, et al. Gamification for health promotion: Systematic review of behaviour change techniques in smartphone apps. BMJ Open. 2016;6(10):e012447.
    124. Burnier M, Egan BM. Adherence in hypertension: A review of prevalence, risk factors, impact, and management. Circ Res. 2019;124(7):1124-40.
    125. Drummond GR, Vinh A, Guzik TJ, Sobey CG. Immune mechanisms of hypertension. Nat Rev Immunol. 2019;19(8):517-32.
    126. Natarajan A, Pantelopoulos A, Emir-Farinas H, Natarajan P. Heart rate variability with photoplethysmography in 8 million individuals: A cross-sectional study. Lancet Digit Health. 2020;2(12):e650-7.
    127. Parati G, Frattola A, Di Rienzo M, Castiglioni P, Pedotti A, Mancia G. Effects of aging on 24-h dynamic baroreceptor control of heart rate in ambulant subjects. Am J Physiol. 1995;268(5 Pt 2):H1606-12.
    128. Munoz ML, van Roon A, Riese H, Thio C, Oostenbroek E, Westrik I, et al. Validity of (ultra-) short recordings for heart rate variability measurements. PLoS One. 2015;10(9):e0138921.
    129. Umetani K, Singer DH, McCraty R, Atkinson M. Twenty-four hour time domain heart rate variability and heart rate: Relations to age and gender over nine decades. J Am Coll Cardiol. 1998;31(3):593-601.
    130. Sinnreich R, Kark JD, Friedlander Y, Sapoznikov D, Luria MH. Five minute recordings of heart rate variability for population studies: Repeatability and age-sex characteristics. Heart. 1998;80(2):156-62.
    131. Park SB, Lee BC, Jeong KS. Standardized tests of heart rate variability for autonomic function tests in healthy Koreans. Int J Neurosci. 2019;117(12):1707-17.
    132. Sassi R, Cerutti S, Lombardi F, Malik M, Huikuri HV, Peng CK, et al. Advances in heart rate variability signal analysis: Joint position statement by the e-Cardiology ESC Working Group and the European Heart Rhythm Association co-endorsed by the Asia Pacific Heart Rhythm Society. Europace. 2015;17(9):1341-53.
    133. Ernst G. Heart-rate variability—More than heart beats? Front Public Health. 2017;5:240.
    134. Quintana DS, Alvares GA, Heathers JA. Guidelines for Reporting Articles on Psychiatry and Heart rate variability (GRAPH): Recommendations to advance research communication. Transl Psychiatry. 2016;6(5):e803.
    135. Kim KK, Baek HJ, Lim YG, Park KS. Effect of missing RR-interval data on heart rate variability analysis in the frequency domain. Physiol Meas. 2019;40(10):105005.
    136. Jeyhani V, Mahdiani S, Peltokangas M, Vehkaoja A. Comparison of HRV parameters derived from photoplethysmography and electrocardiography signals. Proceedings of the 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 2015:5952-5.
    137. Vinik AI, Maser RE, Ziegler D. Autonomic imbalance: Prophet of doom or scope for hope? Diabet Med. 2011;28(6):643-51.
    138. Serhiyenko VA, Serhiyenko AA. Cardiac autonomic neuropathy: Risk factors, diagnosis and treatment. World J Diabetes. 2018;9(1):1.
    139. Pop-Busui R, Boulton AJ, Feldman EL, Bril V, Freeman R, Malik RA, et al. Diabetic neuropathy: A position statement by the American Diabetes Association. Diabetes Care. 2017;40(1):136-54.
    140. Spallone V. Update on the impact, diagnosis and management of cardiovascular autonomic neuropathy in diabetes: What is defined, what is new, and what is unmet. Diabetes Metab J. 2019;43(1):3-30.
    141. Florea VG, Cohn JN. The autonomic nervous system and heart failure. Circ Res. 2014;114(11):1815-26.
    142. Vaseghi M, Shivkumar K. The role of the autonomic nervous system in sudden cardiac death. Prog Cardiovasc Dis. 2008;50(6):404-19.
    143. Ouchi N, Parker JL, Lugus JJ, Walsh K. Adipokines in inflammation and metabolic disease. Nat Rev Immunol. 2011;11(2):85-97.
    144. Lombardi C, Pengo MF, Parati G. Obstructive sleep apnea syndrome and autonomic dysfunction. Auton Neurosci. 2019;221:102563.
    145. Parashar R, Amir M, Pakhare A, Rathi P, Chaudhary L. Age related changes in autonomic functions. J Clin Diagn Res. 2016;10(3):CC11-5.
    146. Zhang Y, Zhang J, Butler J, Yang X, Xie P, Guo D, et al. Contemporary epidemiology, management, and outcomes of patients hospitalized for heart failure in China: Results from the China heart failure (China-HF) registry. J Card Fail. 2017;23(12):868-75.
    147. Floras JS, Ponikowski P. The sympathetic/parasympathetic imbalance in heart failure with reduced ejection fraction. Eur Heart J. 2015;36(30):1974-82.
    148. Edes I, Gasior Z. Effects of nebivolol on left ventricular function in elderly patients with chronic heart failure: Results of the ENECA study. Eur J Heart Fail. 2016;7(2):234-42.
    149. Packer M, Coats AJS, Fowler MB, Katus HA, Krum H, Mohacsi P, et al. Effect of carvedilol on survival in severe chronic heart failure. N Engl J Med. 2001;344(22):1651-8.
    150. Notarius CF, Millar PJ, Floras JS. Muscle sympathetic activity in resting and exercising humans with and without heart failure. Appl Physiol Nutr Metab. 2019;40(11):1107-15.
    151. Rosano GM, Vitale C, Spoletini I. Metabolic approach to heart failure: The role of metabolic modulators. Egypt Heart J. 2017;69(4):287-8.
    152. Rosca MG, Hoppel CL. Mitochondrial dysfunction in heart failure. Heart Fail Rev. 2013;18(5):607-22.
    153. Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C, et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med. 2017;377(12):1119-31.
    154. Joyner MJ, Limberg JK. Blood pressure regulation: Every adaptation is an integration? Eur J Appl Physiol. 2014;114(3):445-50.
    155. La Rovere MT, Pinna GD, Maestri R, Mortara A, Capomolla S, Febo O, et al. Short-term heart rate variability strongly predicts sudden cardiac death in chronic heart failure patients. Circulation. 2003;107(4):565-70.
    156. Patel VN, Pierce BR, Bodapati RK, Brown DL, Ives DG, Stein PK. Association of Holter-derived heart rate variability parameters with the development of congestive heart failure in the cardiovascular health study. JACC Heart Fail. 2017;5(6):423-31.
    157. La Rovere MT, Pinna GD, Raczak G. Baroreflex sensitivity: Measurement and clinical implications. Ann Noninvasive Electrocardiol. 2008;13(2):191-207.
    158. Zaccaro A, Piarulli A, Laurino M, Garbella E, Menicucci D, Neri B, et al. How breath-control can change your life: A systematic review on psycho-physiological correlates of slow breathing. Front Hum Neurosci. 2018;12:353.
    159. Narkiewicz K, van de Borne P, Montano N, Hering D, Kara T, Somers VK. Sympathetic neural outflow and chemoreflex sensitivity are related to spontaneous breathing rate in normal men. Hypertension. 2009;47(1):51-6.
    160. Parati G, Malfatto G, Boarin S, Branzi G, Caldara G, Giglio A, et al. Device-guided paced breathing in the home setting: Effects on exercise capacity, pulmonary and ventricular function in patients with chronic heart failure: A pilot study. Circ Heart Fail. 2008;1(3):178-83.
    161. McKellar GE, McCarey DW, Sattar N, McInnes IB. Role for TNF in atherosclerosis? Lessons from autoimmune disease. Nat Rev Cardiol. 2009;6(6):410-7.
    162. Pedersen BK. Anti-inflammatory effects of exercise: Role in diabetes and cardiovascular disease. Eur J Clin Invest. 2017;47(8):600-11.
    163. Pal GK, Agarwal A, Karthik S, Pal P, Nanda N. Slow yogic breathing through right and left nostril influences sympathovagal balance, heart rate variability, and cardiovascular risks in young adults. N Am J Med Sci. 2014;6(3):145.
    164. Brennan FM, McInnes IB. Evidence that cytokines play a role in rheumatoid arthritis. J Clin Invest. 2008;118(11):3537-45.
    165. Ridker PM, Rifai N, Stampfer MJ, Hennekens CH. Plasma concentration of interleukin-6 and the risk of future myocardial infarction among apparently healthy men. Circulation. 2000;101(15):1767-72.
    166. Grisanti LA, Evanson J, Marchus E, Jorissen H, Woster AP, DeKrey W, et al. Pro-inflammatory responses in human monocytes are β1-adrenergic receptor subtype dependent. Mol Immunol. 2010;47(6):1244-54.
    167. Irwin MR. Sleep and inflammation: Partners in sickness and in health. Nat Rev Immunol. 2019;19(11):702-15.
    168. de Boer RA, Voors AA, Muntendam P, van Gilst WH, van Veldhuisen DJ. Galectin-3: A novel mediator of heart failure development and progression. Eur J Heart Fail. 2009;11(9):811-7.
    169. Martelli D, McKinley MJ, McAllen RM. The cholinergic anti-inflammatory pathway: A critical review. Auton Neurosci. 2014;182:65-9.
    170. Huston JM, Tracey KJ. The pulse of inflammation: Heart rate variability, the cholinergic anti‐inflammatory pathway and implications for therapy. J Intern Med. 2011;269(1):45-53.
    171. Kenney MJ, Ganta CK. Autonomic nervous system and immune system interactions. Compr Physiol. 2014;4(3):1177-200.
    172. Fairchild KD, Saucerman JJ, Raynor LL, Sivak JA, Xiao Y, Lake DE, et al. Endotoxin depresses heart rate variability in mice: Cytokine and steroid effects. Am J Physiol Regul Integr Comp Physiol. 2009;297(4):R1019-27.
    173. Dobbs WC, Fedewa MV, MacDonald HV, Holmes CJ, Cicone ZS, Plews DJ, et al. The accuracy of acquiring heart rate variability from portable devices: A systematic review and meta-analysis. Sports Med. 2019;49(3):417-35.
    174. Torous J, Jän Myrick K, Rauseo-Ricupero N, Firth J. Digital mental health and COVID-19: Using technology today to accelerate the curve on access and quality tomorrow. JMIR Ment Health. 2020;7(3):e18848.
    175. Whelton PK, Carey RM, Aronow WS, Casey DE, Collins KJ, Dennison Himmelfarb C, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults. J Am Coll Cardiol. 2018;71(19):e127-248.
    176. Gerritsen J, Band GP. Breath of life: The respiratory vagal stimulation model of contemplative activity. Front Hum Neurosci. 2018;12:397.
    177. Harada D, Asanoi H, Takagawa J, Ishise H, Ueno H, Oda Y, et al. Slow and deep respiration suppresses steady-state sympathetic nerve activity in patients with chronic heart failure: From modeling to clinical application. Am J Physiol Heart Circ Physiol. 2014;307(8):H1159-68.
    178. Vaschillo E, Vaschillo B, Lehrer P. Characteristics of resonance in heart rate variability stimulated by biofeedback. Appl Psychophysiol Biofeedback. 2006;31(2):129-42.
    179. Van Diest I, Verstappen K, Aubert AE, Widjaja D, Vansteenwegen D, Vlemincx E. Inhalation/exhalation ratio modulates the effect of slow breathing on heart rate variability and relaxation. Appl Psychophysiol Biofeedback. 2014;39(3-4):171-80.
    180. Shiffman S, Stone AA, Hufford MR. Ecological momentary assessment. Annu Rev Clin Psychol. 2008;4:1-32.
    181. McDade TW, Williams S, Snodgrass JJ. What a drop can do: Dried blood spots as a minimally invasive method for integrating biomarkers into population-based research. Demography. 2007;44(4):899-925.
    182. Ferdinand KC, Vo TN, Echols MR. State-of-the-art review: Hypertension practice guidelines in the era of COVID-19. Am J Prev Cardiol. 2020;2:100038.
    183. Gabb GM, Mangoni AA, Arnolda L. Guideline for the diagnosis and management of hypertension in adults—2016. Med J Aust. 2016;205(2):85-9.
    184. Silvani A, Calandra-Buonaura G, Dampney RA, Cortelli P. Brain–heart interactions: Physiology and clinical implications. Philos Trans A Math Phys Eng Sci. 2016;374(2067):20150181.
    185. Hermida RC, Crespo JJ, Domínguez-Sardiña M, Otero A, Moyá A, Ríos MT, et al. Bedtime hypertension treatment improves cardiovascular risk reduction: The Hygia Chronotherapy Trial. Eur Heart J. 2020;41(48):4565-76.
    186. Leopold JA, Loscalzo J. Emerging role of precision medicine in cardiovascular disease. Circ Res. 2018;122(9):1302-15.
    187. Piette JD, List J, Rana GK, Townsend W, Striplin D, Heisler M. Mobile health devices as tools for worldwide cardiovascular risk reduction and disease management. Circulation. 2016;132(21):2012-27.
    188. Ospina MB, Bond K, Karkhaneh M, Tjosvold L, Vandermeer B, Liang Y, et al. Meditation practices for health: State of the research. Evid Rep Technol Assess. 2007;(155):1-263.
    189. Mennini FS, Marcellusi A, von der Schulenburg JM, Gray A, Levy P, Sciattella P, et al. Cost of poor adherence to anti-hypertensive therapy in five European countries. Eur J Health Econ. 2015;16(1):65-72.
    190. Goldsack JC, Coravos A, Bakker JP, Bent B, Dowling AV, Fitzer-Attas C, et al. Verification, analytical validation, and clinical validation (V3): The foundation of determining fit-for-purpose for Biometric Monitoring Technologies (BioMeTs). NPJ Digit Med. 2020;3(1):1-15.
    191. Turakhia MP, Desai SA, Harrington RA. The outlook of digital health for cardiovascular medicine: Challenges but also extraordinary opportunities. JAMA Cardiol. 2016;1(7):743-4.

    QR CODE
    :::