| 研究生: |
張雅涵 Ya-han Chang |
|---|---|
| 論文名稱: |
硬軟奈米球存在下光子晶體建構之研究 Fabrication of photonic crystals with hard and soft nanospheres |
| 指導教授: |
陳暉
Hui-Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 125 |
| 中文關鍵詞: | 光子晶體 |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討利用PS次微米球(PS球)與不同含量之奈米球來建構光子晶體,以及光子晶體之成膜性質。
首先利用無乳化劑乳化聚合法在沸騰狀態下製備PS球(185.4 nm)以及不同硬軟奈米球。硬軟奈米球是以苯乙烯(St)、甲基丙烯酸正丁酯﹙BMA﹚、 丙烯酸丁酯(BA),為單一單體或兩種單體,在不同含量之共單體對-苯乙烯磺酸鈉鹽(Nass)存在下,聚合成六種硬軟奈米球,即可依據玻璃轉移溫度(Tg),區分為成兩種硬奈米球(H100與H58)與四種軟奈米球(S26、S06、S-17與S-54)。並利用動態光散射粒徑分析儀(DLS)與折射率偵檢器來量測硬軟奈米球粒徑、均一度與折射率,結果顯示六種硬軟奈米球均一性好且粒徑約30nm,其折射率分佈於1.4至1.6之間。
接下來將上述硬軟奈米球以不同添加含量,分別與PS球混合後,自組裝形成光子晶體,得到硬或軟奈米球存在下之光子晶體建構,並利用掃描式電子顯微鏡(SEM)、有效折射率公式、修飾布拉格公式(Modified Bragg’s law) 與紫外-可見光光譜儀(UV-Vis),探討其表面形態、粒徑大小分佈以及光子晶體行為,同時也利用DLS探討軟奈米球在次微米球溶液中的穩定性。
PS球在硬奈米球存在下之光子晶體建構,由SEM結果顯示硬奈米球規則排列於PS球間,且些許撐開PS球間距,造成數目平均粒徑(Dn)隨之上升。經由有效折射率公式與修飾布拉格公式,計算得到隨著硬奈米球添加量的增加,有效折射率(neff)隨之上升,且反射波長(λ)也隨之上升而產生紅位移現象,此光子晶體行為與UV-Vis量測反射波長(λmax)相符合。
PS球在軟奈米球存在下之光子晶體建構,由SEM結果顯示軟奈米球軟化成膜於PS球間,具有規則性排列,造成Dn隨之上升。經由有效折射率公式與修飾布拉格公式,計算得知隨著軟奈米球添加量的增加, neff不變,而λ上升產生紅位移現象,此光子晶體行為與UV-Vis量測λmax有相同趨勢。
將上述之光子晶體膜,利用鉛筆硬度計探討膜性質,結果顯示結果顯示當使用Tg越低且添加含量最多的奈米球其成膜性質最好,也就是S-54存在20 wt.%之光子晶體膜,鉛筆硬度值從原本小於6B可提升至H。
最後利用二氧化矽前驅物製備反光子晶體模板,可以證實光子晶體在硬奈米球存在下分散於PS球,而在軟奈米球存在下,則塗佈於PS球上。
In this study, photonic crystals were fabricated by self-assembled polystyrene submicrosphere (PS sphere) with different amount of nanospheres and their opal and mechanic properties were investigated.
First, PS sphere (185.4nm) and nanospheres were prepared by soap-free emulsion polymerization at boiling condition. Styrene, n-butyl methacrylate, and butyl acrylate were used as monomers in the presence of sodium p-styrenesulfonate to prepare nanospheres. According to glass transition temperature (Tg), nanospheres were divided into hard nanospheres (H100 and H58) and soft nanospheres (S26, S06, S-17 and S-54). The particle size, polydispersity index (PDI) and refractive index of nanospheres was measured by dynamic particle size analysis (DLS) and refractive index detector (RI). The results showed that nanospheres had narrow PDI, about 30nm diameter and 1.4 to 1.6 RIs.
Surface morphology, particle size (Dn), and wavelength (λ) of photonic crystals were determined from scanning electron microscope (SEM), effective refractive index equation and modified Bragg's law. The reflection wavelength (λmax) was measured from ultraviolet-visible spectroscopy (UV-Vis). In addition, stability of soft nanospheres in PS sphere solution was measured by DLS.
SEM results showed that hard nanospheres were distributed around PS spheres in their photonic crystals. On the other hand, soft nanopheres were coated onto PS spheres in their photonic crystals. With increasing weight fraction of hard or soft nanospheres in the photonic crystals, Dn and λ were increased. The value of λmax was corresponding to that of λ.
The mechanical property of the photonic crystals was measured by the pencil hardness test. The result showed with increasing Tg and the weight fraction of nanospheres, the pencil hardness was increased. The opal film prepared by PS sphere with 20% S-54 nanpsphere had the highest pencil hardness, H.
Finally, inverse opal templates were fabricated by adding silica precursor into photonic crystals, then calcinated. SEM results showed that hard nanospheres were distributed around PS spheres and soft nanospheres were coated onto PS spheres in their photonic crystals, respectively.
(1) S. John, “Strong localization of photons in certain disordered dielectric superlattices”, Physical Review Letters, 58, 2486-2489, 1987.
(2) E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics”, Physical Review Letters, 58, 2059-2062, 1987.
(3) J. C. Knight, T. A. Birks, B. J. Mangan, P. St. J. Russell, “Microstructure silica as an optical-fiber material”, MRS Bulletin, 8, 614-617, 2001.
(4) A. Polman, P. Wiltzius, “Material science aspects of photonic crystals”, MRS Bulletin, 8, 608-613, 2001.
(5) A. J. Turberfield, “Photonic crystals made by holography”, MRS Bulletin, 8, 632-636, 2001.
(6) 陳韻婷,「製備次微米級均一粒徑之染料球」,國立中央大學,碩士論文,民國96年。
(7) E. A. Monroe, S. E. Monroe, “Origin of iridescent colors on the indigo snake”, Science, 159, 97-98, 1967.
(8) S. Kinoshita, S. Yoshioka, “structural colors in nature: the role of regularity and irregularity in the structure”, Chemphyschem, 6, 1442-1459, 2005.
(9) L. P. Biro, Z. Balint, K. Kertesz, “Role of photonic-crystal-type structures in the thermal regulation of a lycaenid butterfly sister species pair”, Physical Review E, 67, 021907, 2003.
(10) E. Yablonovitch, “Photonic crystal: semiconductors of light”, Scientific American, 12, 35, 2001.
(11) K. Sumioka, H. Kayashima, T. Tsutsui, “Tuning the optical properties of inverse opal photonic crystals by deformation”, Advanced Materials, 14, 1284-1286, 2002.
(12) S. Wong, V. Kitaev, G. A. Ozin, “Colloidal crystal films: advances in universality and perfection”, Journal of the American Chemical Society, 125, 15589-15598, 2003.
(13) E. Yablonovitch, T. J. Gmitter, K. M. Leung, “Photonic band structure: the face-centered-cubic case employing nonspherical atoms”, Physical Review Letter, 67, 2295-2298, 1991.
(14) L. Wang, S. Zhang, Q. Wang et al., “Fabrication of three-dimensional (3D) woodpile structure photonic crystal with layer by layer e-beam lithography”, Applied Physics A: Materials Science & Processing, 95, 329-334, 2009.
(15) R. F. Service, “Building better photonic crystals”, Science, 29, 2399, 2002.
(16) Y. Xia, B. Gates, Y. Yin et al., “Monodispersed colloidal spheres: old materials with new applications”, Advanced Material, 10, 693-713, 2000.
(17) Y. K. Lin, P. R. Herman, W. Xu, “In-fiber colloidal photonic crystals and the formed stop band in fiber longitudinal direction”, Journal of Applied Physics, 102, 073106, 2007.
(18) A. J. Wang, S. L. Cheng, P. Dong et al., “Fabrication of colloidal photonic crystals with heterostructure by spin-coating method”, Chinese Physics Letters, 26, 024210, 2009.
(19) T. Kanai, T. Sawada, A. Toyotama et al., “Air-pulse-drive fabrication of photonic crystal films of colloids with high spectral quality”, Advanced Functional Materials, 15, 25-29, 2005.
(20) Z. Z. Gu, Q.B. Meng, S. Hayami et al., “Self-assembly of submicron particles between electrodes”, Journal of Applied Physics, 90, 2042-2045, 2001.
(21) F. Piret, Y. U. Kwon, B. L. Su, “Silica colloidal crystals with uni- and multi-photonic bandgaps and controlled reflective properties”, Chemical Physics letters, 472, 207-211, 2009.
(22) L. M. Goldenberg, J. Wagner, J. Stumpe, B. R. Paulke, E. Gornitz, “Ordered arrays of large latex particles organized by vertical deposition”, Langmuir, 18, 3319, 2002.
(23) M. Egen, R. Voss, B. Griesebock, R. Zentel, “Heterostructures of polymer photonic crystal films”, Chemistry of Material, 15, 3786, 2003.
(24) K. Liu, T. A. Schmedake, R. Tsu, “A comparative study of colloidal silica spheres: Photonic crystals versus Bragg's law”, Physics Letters A, 372, 4517-4520, 2008.
(25) W. Wang, B. Gu, L. Liang, “Effect of anionic surfactants on synthesis and self-assembly of silica colloidal nanoparticles”, Journal of Colloid and Interface Science, 313, 169-173, 2007.
(26) Z. Z. Gu, S. Hayami, S. Kubo, Q. B. Meng, Y. Einaga, D. A. Tryk, A. Fujishima, O. Sato, “Fabrication of structured porous film by electrophoresis”, J. Am. Chem. Soc.,123, 175, 2001.
(27) M. Muller, R. Zentel, T. Maka, S. G. Romanov, C. M. S. Torres, “Dye-containing polymer beads as photonic crystals”, Chemistry of Materials, 12, 2508-2512, 2000.
(28) M.M.M. Ward, L.E. Stunja, S.A. Asher, “Polymerized crystalline colloidal array sensing of high glucose concentrations”, Anal. Chem., 81, 4978-4986, 2009.
(29) C. D. Geary, I. Zudans, A.V. Goponenko, S.A. Asher, S.G. Weber, “Electrochemical investigation of Pb2+ binding and transport through a polymerized crystalline colloidal array hydrogel containing benzo-18-crown-6” , Anal. Chem., 77, 185-192, 2005.
(30) C. L. Huisman, J. Schoonman, A. Goossens, “The application of inverse titania opals in nanostructured solar cells”, Solar Energy Materials & Solar Cells, 85, 115-124, 2005.
(31) C. Jin, M. A. McLachlan, D. W. McComb, R. M. D. L. Rue, N. P. Johnson, “Template-assisted growth of nominally cubic (100)-oriented three-dimensional crack-free photonic crystals”, Nano Lett., 5, 2646-2650, 2005.
(32) M. Augustin, H. J. Fuchs, D. Schelle, E. B. Kley, S. Nolte, A. Tunnermann, “High transmission and single-mode operation in low-index-contrast photonic crystal waveguide devices”, Appl. Phys. Lett., 84, 663-665, 2004.
(33) H. Fudouzi, T. Sawada, “Photonic ribber sheets with tunable color by elastic deformation”, Langmuir, 22, 1365-1368, 2006.
(34) L. M. Fortes, M. C. Goncalves, R. M. Almeida, “Flexible photonic crystals for strain sensing”, Optical Materials, 33, 408-412, 2011.
(35) J. Li, Y. Wu, J. Fu, Y. Cong, J. Peng, Y. C. Han, “Reversibly strain, tunable elastomeric photonic crystals”, Chemical physics Letters, 390, 285-289, 2004.
(36) A. C. Arsenault, T. J. Clark, G. V. Freymann, L.Cadermartiri, R. Sapienza, J. Bertolotti, E. Vekris, S. Wong, V. Kitaev, I. Manners, R. Z. Wang, S. John, D. Wiersma, G. A. Ozin, “From colour fingerprinting to the control of photoluminescence in elastic photonic crystals”, Nature Materials, 5, 179-184, 2006.
(37) R. Parker, L. Welch, D. Driver, N. Matini,“Opal analogue discovered in a weevil”, Nature, 426, 786, 2003.
(38) Z. Y. Cai, J. H. Teng, Y. Wan, X. S. Zhao, “An improved convective self-zssembly method for the fabrication of binary colloidal crystals and inverse structure”, Journal of Colloid and Interface Science, 380, 42-50, 2012.
(39) J. G. Mcgrath, R. D. Bock, J. M. Cathcart, L. A. Lyon, “Self-assembly of Paint-on colloidal crystals using Poly(styrene-Co-N-Isopropylacrylamide) Spheres”, Chemistry of Materials, 19, 1584-1591, 2007.
(40) E.T. Tian, L. Y. Cui, J. X. Wang, Y.L. Song, L. Jiang, “Tough photonic crystals fabricated by photo-crosslinkage of latex spheres”, Macromolecular Rapid Communication, 30, 509-514, 2009.
(41) C. E. Finlayson, C. Goddard, E. Papachristodoulou, D. R. E. Snoswell, A. Kontogeorgos, P. Spahn, G. P. Hellmann, O. Hess, J.J. Baumberg, “Ordering in strech-tunable polymeric opal fibers”, Optics Express, 19, 3144-3154, 2011.
(42) C. E. Finlayson, A. I. Haines, D. R. E. Snoswell, A. Kontogeorgos, S. Vignolini, J.J. Baumberg, P. Spahn, G. P. Hellmann, “Interplay of index contrast with periodicity in polymer photonic crystals”, Applied Physics Letters, 99,261913 , 2011.
(43) Z. H. Shen, Y. Zhu, L. M. Wu, B. You, J. Zi, “Fabrication of robust crystal ball from the electrospray of soft polymer spheres/silica dispersion”, Langmuir, 26, 6604-6609, 2010.
(44) L. Duan, B. You, L. Wu, M. Chen, “Facile fabrication of mechanochromic-responsive colloidal crystal films”, Journal of Colloid and Interface Science 353, 163-168, 2011.
(45) Z. H. Shen, L. Shi, B. You, L. M. Wu, D. Y. Zhao, “Large-scale fabrication of three-dimensionaL ordered polymer film with strong structure color and robust mechanical properties ”, Journal of Materials Chemistry, 22, 8069-8075, 2012.
(46) A. Emoto, E. Uchida, T. Fukuda, “Fabrication and optical properties of binary colloidal crystal monolayers consisting of micro- and nano-polystyrene spheres”, Colloids and Surfaces A: Physicochem. Eng. Aspects 396,189-194, 2012.
(47) 鍾儀文,「以膠體製程製備光子晶體及其性質之探討」,國立成功大學,碩士論文,民國95年。
(48) 林惠敏,「均ㄧ粒徑次微米染料球之合成與其自組裝排列之研究」,國立中央大學,碩士論文,民國97年。
(49) 黃威迪,「製備具高表面電位之奈米球」,國立中央大學,碩士論文,民國101年。
(50) 李雨純,「製備具軟殼結構之均一粒徑次微米球」 國立中央大學,碩士論文,民國100年。
(51) I. D. Hosein, C. M. Liddell, “Homogeneous, core-shell, and holloe-shell ZnS colloid-based photonic crystals”, Langmuir, 23, 2892-2897, 2007.