跳到主要內容

簡易檢索 / 詳目顯示

研究生: 王光祿
KuangLu Wang
論文名稱: 隨機右設限存活資料之下根據聯合信賴域所做的多重比較
Multiple comparison procedures based on simultaneous confidence regions for random right-censored survival data
指導教授: 陳玉英
Yuh-Ing Chen
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 統計研究所
Graduate Institute of Statistics
畢業學年度: 97
語文別: 中文
論文頁數: 131
中文關鍵詞: 多重比較右設限限制平均壽命存活百分位數分層比例風險模式
外文關鍵詞: multiple comparison, right-censored, stratified proportional hazards model, survival percentile, restricted mean life time
相關次數: 點閱:19下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 多重比較法(multiple comparison procedure)是評估多個處理效應異同的多重決策。因聯合信賴域(simultaneous confidence region)除了能夠用作檢定,且可提供各處理組存活差異大小的訊息。所以,本文首先針對不具共變數的隨機右設限(right censored)存活資料,分別建構存活百分位數差異和限制平均壽命差異的聯合信賴域,然後,針對具共變數的隨機右設限存活資料,分別在分層Cox模式(stratified Cox model)和不分層Cox模式(unstratified Cox model)之下,建構條件存活百分位數差異和條件限制平均壽命差異的聯合信賴域。在比例風險和非比例風險二種模式,本文模擬研究上述所提信賴域的覆蓋機率(coverage)及平均距離(averaged absolute deviance)。最後,藉由實例分析說明本文所提各種方法的應用。


    The multiple comparison procedures are multiple decisions that assess the differences of the effects for more than two treatment groups, simultaneously. Because the simultaneous confidence regions can not be only used for the problems of hypotheses testing, but also provide the information about the magnitudes of the differences between the survival indices of each treatment group. Therefore, for random right-censored survival data without covariates, the simultaneous confidence regions for the differences between the survival percentiles and the differences between the restricted mean life times are constructed, firstly. Next, for random right-censored survival data with covariates, the simultaneous confidence regions for the differences between the conditional survival percentiles and the differences between the conditional restricted mean life times are constructed under the stratified Cox model and the unstratified Cox model, respectively. In the simulation study, the cases of proportional hazards and nonproportional hazards are considered, and the coverages and the averaged absolute deviances between the lower bounds and the true parameters are then provided. Finally, the use of the proposed procedures in this article is illustrated with a right-censored survival data

    第一章 緒 論 ............................................ 1 1.1 研究動機與目的 ...................................... 1 1.2 文獻回顧 ............................................ 4 1.2.2 累積風險函數之Nelson-Aalen估計式的聯合弱收斂 ..... 5 1.2.2 分層Cox模式下基準累積風險函數估計式的聯合弱收斂 .. 6 1.2.3 不分層Cox模式下基準累積風險函數估計式的弱收斂 .... 9 第二章 不具共變數之多重比較 .............................. 11 2.1 根據存活百分位數的多重比較 .......................... 11 2.1.1 多個處理組和對照組的比較 ......................... 11 2.1.2 相鄰處理組的比較 ................................. 16 2.2 根據限制平均壽命的多重比較 .......................... 17 2.2.1 多個處理組和對照組的比較 ......................... 17 2.2.2 相鄰處理組的比較 ................................. 20 2.2.3 限制時間點的決定 ................................. 22 第三章 具共變數之多重比較 ................................ 24 3.1 分層Cox模式下根據條件存活百分位數的多重比較 ......... 24 3.1.1 多個處理組和對照組的比較 ......................... 24 3.1.2 相鄰處理組的比較 ................................. 29 3.2 分層Cox模式下根據條件限制平均壽命的多重比較 ......... 31 3.2.1 多個處理組和對照組的比較 ......................... 31 3.2.2 相鄰處理組的比較 ................................. 34 3.3 不分層Cox模式下根據條件存活百分位數的多重比較 ....... 36 3.3.1 多個處理組和對照組的比較 ......................... 36 3.3.2 相鄰處理組的比較 ................................. 40 3.4 不分層Cox模式下根據條件限制平均壽命的多重比較 ....... 42 3.4.1 多個處理組和對照組的比較 ......................... 42 3.4.2 相鄰處理組的比較 ................................. 45 第四章 模擬研究 .......................................... 48 4.1 不具共變數多重比較之模擬研究 ........................ 48 4.2 具共變數多重比較之模擬研究 .......................... 50 第五章 實例分析 .......................................... 53 第六章 結 語 ............................................ 59 參考文獻 .................................................. 61 附錄 ...................................................... 66

    Andersen, P. K., Borgan, O., Gill, R. D. and Keiding, N. (1993). Statistical Models Based on Counting Processes. Springer, New York.
    Andersen, P. K. and Gill, R. D. (1982). Cox’s regression model for counting processes: A large sample study. The Annals of Statistics 10, 1100-1120.
    Basawa, I. V. and Koul, H. L. (1988). Large-sample statistics based on quadratic dispersion. International Statistical Review 56, 199-219.
    Billingsley, P. (1968). Convergence of Probability Measures. Wiley, New York.
    Burr, D. and Doss, H. (1993). Confidence bands for the median survival times as a function of the covariates in the Cox model. Journal of the American Statistical association 88, 1330-1340.
    Byar, D. P. and Corle, D. K. (1977). Selecting optimal treatment in clinical trials using covariate information. Journal of Chronic Disease 30, 445-459.
    Chen, P. Y. and Tsiatis, A. A. (2001). Causal inference on the difference of two restricted mean lifetime between two groups. Biometrics 57, 1030-1038.
    Chen, Y. I. (2000). Multiple comparisons in carcinogenesis study with right-censored survival data. Statistics in Medicine 19, 353-367.
    Chen, Y. I. and Chang, Y. M. (2007). Covariates-dependent confidence intervals for the difference or ratio of two median survival times. Statistics in Medicine 26, 2203-2213.
    Chen, Y. I. and Chi, Y. C. (2000). Multiple comparisons between successive treatments for randomly right-censored survival data. Journal of Statistical Planning and Inference 83, 137-151.
    Chen, Y. I. and Wang, K. L. (2008). Simultaneous nonparametric confidence regions for comparing successive treatments. Advances and Applications in Statistics 9, 127-139.
    Chi, Y. C. (2005). Multiple testing procedures based on weighted Kaplan-Meier statistics for right-censored survival data. Statistics in Medicine 24, 23-35.
    Cox, D. R. (1972). Regression models and life tables (with discussion). Journal of the Royal Statistical Society, Series B 34, 187-220.
    Dabrowska, D. M. and Doksum, K. A. (1987). Estimates and confidence intervals for median and mean life in the proportional hazard model. Biometrika 74, 799-807.
    Drezner, Z. (1992). Computation of the multivariate normal integral. ACM Transactions on Mathematical Software 18, 470-480.
    Dunnett, C. W. (1955). A multiple comparison procedure for comparing several treatments with a control. Journal of the American Statistical Association 50, 1096-1121.
    Fleming, T. R. and Harrington, D. P. (1991). Counting Processes and Survival Analysis. Wiley, New York.
    Gill, R. D. (1989). Non- and semi-parametric maximum likelihood estimators and the von Mises method (Part 1). Scandinavian Journal of Statistics 16, 97-128.
    Greenwood, M. (1926). The natural duration of cancer. Reports on public health and medical subjects 33, 1-26. London: Her Majesty’s Stationery Office.
    Irwin, J. O. (1949). The standard error of an estimate of exponential life. Journal of Hygiene 47, 188-189.
    Kalbfleisch, J. D. and Prentice, R. L. (1980). The statistical analysis of failure time data. Wiley, New York.
    Kalbfleisch, J. D. and Prentice, R. L. (1981). Estimation of the average hazard ratio. Biometrika 68, 105-112.
    Kaplan, E. L. and Meier, P. (1958). Nonparametric estimation from incomplete observations. Annals of the Institute of Statistical Mathematics 53, 457-481.
    Karrison, T. (1987). Restricted mean life with adjustment for covariates. Journal of the American Statistical Association 82, 1169-1176.
    Karrison, T. (1997). Use of Irwin’s restricted mean life as an index for comparing survival in different treatment groups-Interpretation and power considerations. Controlled Clinical Trials 18, 151-167.
    Kim, J. (2001). Confidence intervals for the difference of median survival times using the stratified Cox proportional hazards model. Biometrical Journal 43, 781-790.
    Klein, J. P. and Moeschberger, Melvin L. (2003). Survival analysis: Techniques for censored and Truncated data, 2nd edition. Springer, New York.
    Lee, R. E. and Spurrier, J. D. (1995). Successive comparisons between ordered treatments. Journal of Statistical Planning and Inference 43, 323-330.
    Mann, H. B. and Whitney, D. R. (1947). On a test of whether one of two random variables is stochastically larger than the other. Annals of Mathematical Statistics 18, 50-60.
    Pepe, M. S. and Fleming, T. R. (1989). Weighted Kaplan-Meier statistics: A class of distance tests for censored survival data. Biometrics 45, 497-507.
    Peto, R., Pike, M. C., Armitage, P., Breslow, N. E., Cox, D. R., Howard, S. V., Mantel, N., McPherson, K., Peto, J. and Smith P.G. (1977). Design and analysis of randomized clinical trials requiring prolonged observation of each patient Ⅱ: Analysis and examples. British Journal of Cancer 35, 1-39.
    Ramlau-Hansen, H. (1983). Smoothing counting process intensities by means of kernel functions. The Annals of Statistics 11, 453-466.
    Shorack, G. R. and Wellner, J. A. (1986). Empirical Processes with Applications to Statistics. Wiley, New York.
    Steel, R. G. D. (1959). A multiple comparison rank sum test: Treatments versus control. Biometrics 15, 560-572.
    Su, J. Q. and Wei, L. J. (1993). Nonparametric estimation for the difference or ratio of median survival times. Biometrics 49, 603-607.
    Wang, J. L. and Hettmansperger, T. P. (1990). Two-sample inference for median survival times based on one-sample procedures for censored survival data. Journal of American Statistical Association 85, 529-536.
    Wells, M. T. (1994). Nonparametric kernel estimation in counting processes with explanatory variables. Biometrika 81, 795-801.
    Zucker, D. M. (1998). Restricted mean life with covariates: Modification and extension of a useful survival analysis method. Journal of the American Statistical Association 93, 702-709.
    張玉媚 (2006),鑑別右設限存活資料中的最低有效劑量。博士論文,國立中央大學統計研究所。

    QR CODE
    :::