跳到主要內容

簡易檢索 / 詳目顯示

研究生: 薩克蘭
Muhammad Saqlain Aslam
論文名稱: 基於深度學習以及中醫理論之虹膜學體質分類系統理論 與實作
Theory and Implementation of Body Constitution Classification System based on Iridology with Deep Learning and TCM Theory
指導教授: 王家慶
Jia-Ching Wang
口試委員:
學位類別: 博士
Doctor
系所名稱: 資訊電機學院 - 資訊工程學系
Department of Computer Science & Information Engineering
論文出版年: 2021
畢業學年度: 110
語文別: 英文
論文頁數: 99
中文關鍵詞: 虹膜學電腦輔助診斷醫療保健深度學習機器學習另類療法生成式對抗網路虹膜圖像生成信號合成超解析度影像 技術生物辨識
外文關鍵詞: iridology, complementary medicine, signal synthesis, biometric recognition
相關次數: 點閱:25下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在過去幾年中,深度學習開始在不同領域的醫療保健中產生巨大影響。深度學習方 法在醫療保健領域比較常見的應用在於設計一個可以輔助疾病診斷和自動分析醫學 圖像的系統,用以幫助制定治療計劃。人眼對於醫學圖像辨識的難度相當高,即便深 度學習 (DL) 方法在圖像識別方面表現良好,應用在醫學影像中仍是前所未有的挑戰。 在虹膜圖像處理中實施電腦輔助技術,並將虹膜學與中醫 (TCM) 相結合是數位圖像 處理和人工智慧研究的一個具有挑戰性的領域。本論文重點將討論如何處理虹膜診 斷中的挑戰性問題:(1) 如何開發基於深度學習的計算機輔助診斷 (CAD) 方法來自 動化虹膜學應用程序; (2) 如何處理數據集中的類別不平衡問題;(3) 如何將圖像分 辨率提高使得能夠在後期使用深度學習技術。因此,訓練深度學習模型以識別特定 模式是一項艱鉅的任務。 對於第一個問題,本篇提出的方法結合了基於虹膜識別框架的電腦視覺技術和使用 卷積神經網路的圖像分類方法,替為醫療保健行業中創造了一種新方法。 數據集當中存在戴眼鏡的眼睛圖像、瞳孔過大和過小的圖像、虹膜位置錯位的圖像 等異常類別,造成數據集類別高度不平衡。 這種異常情況會引起虹膜分割和遮罩預 估的失敗,進而導致虹膜識別和虹膜診斷的失敗。為了解決類別不平衡問題並生成 更多稀有虹膜圖像,我們提出了一種數據增強方法,該方法使用具有梯度懲罰的條 件式 Wasserstein 生成對抗網路(CWGAN-GP)生成少數虹膜圖像,從而為稀有數據 收集節省了大量人力成本。 在數位影像中,圖像分辨率在各種影像處理技術皆為重要因素。若分辨率低,則難以 被虹膜學與虹膜辨識使用。為了提高圖像分辨率來獲得更好的分類效果,我們提出單 張圖像超分辨率(SISR)演算法─DDA-SRGAN,基於生成對抗式網路(GAN)中使用掩碼 注意機制(mask-attention mechanism)。


    In the past few years, deep learning (DL) has emerged to give big impacts in different areas of healthcare. The application of deep learning approaches in healthcare aims to design a system that can assist diagnosis of diseases and automate the analysis of medical images to help treatment planning. DL methods perform adequately in image recognition, nevertheless medical images show unprecedented challenges. Implementing computer-aided techniques in iris image processing and connecting iridology with Traditional Chinese Medicine (TCM) is a challenging area of research in digital image processing and artificial intelligence. This thesis focuses on how to deal with the challenging problems in iridology: (1) how to develop a DL-based Computer-Aided Diagnosis (CAD) methodology to automate the iridology applications; (2) how to deal with the problem of class imbalance in dataset, (3) how to enhance the image resolution to a scale which enables the deep learning technique in later stage. Consequently, it causes a daunting task to train a deep learning model to recognize specific patterns. For the first problem, the proposed work combined the computer vision techniques based on the iris recognition framework and image classification approaches using convolutional neural networks to make a new approach in the healthcare profession. The dataset is highly imbalanced due to scarcity of the abnormal classes such as images of eyes with glasses, oversized and undersized pupils, and misaligned iris locations … etc. Such abnormal cases will cause the failure of iris segmentation and mask estimation, which will lead to the failure of iris recognition as well as iridology classification. To address the class imbalance problem and generate more rare cases of iris, we propose a data augmentation method that uses the Conditional Wasserstein Generative Adversarial Network with Gradient Penalty (CWGAN-GP) to generate minority iris images, which saves extensive labor costs for rare data collection. In digital imaging, image resolution is a primary factor for the progress of various image processing technologies. If the resolution is low, then it is hard to perform iridology and iris recognition. In order to enhance the image resolution for a better classification rate, we propose DDA-SRGAN, a single image super-resolution (SISR) algorithm, based on the mask-attention mechanism used in Generative Adversarial Network (GAN).

    Table of Contents 摘要...................................................................................................................................... vii Abstract .............................................................................................................................. viii Authorship Attribution....................................................................................................... ix Acknowledgements............................................................................................................... x Table of Contents................................................................................................................. xi List of Figures.................................................................................................................... xiv List of Tables..................................................................................................................... xvii Chapter 1: Introduction....................................................................................................... 1 1.1 Background................................................................................................................. 1 1.2 Motivation ................................................................................................................... 2 1.3 Problem Statement and Research Goal.................................................................... 4 Chapter 2: Classification of Body Constitution based on TCM philosophy and Deep Learning ................................................................................................................................ 5 2.1 Introduction ................................................................................................................ 5 2.2 Related Work............................................................................................................ 10 2.3 Materials and Methods ............................................................................................ 14 2.3.1 Iridology with Traditional Chinese Medicine (TCM).................................... 14 2.4 Overview of the Proposed System........................................................................... 16 2.4.1 Iris Image Acquisition....................................................................................... 17 2.4.2 Image Processing ............................................................................................... 17 2.4.3 Iris Segmentation............................................................................................... 17 2.4.4 Body Constitution Classification Using CNN Models.................................... 18 2.5 Experimental Results ............................................................................................... 18 2.5.1 Database ............................................................................................................. 19 2.5.2 Data Labeling and Partition............................................................................. 19 2.6 Model Training ......................................................................................................... 20 2.6.1 Inception V3....................................................................................................... 20 2.6.2 Residual Neural Network (ResNet).................................................................. 21 2.6.3 Dense Convolutional Network (DenseNet)...................................................... 22 2.6.4 Hyperparameters and Hardware..................................................................... 22 xii 2.7 Performance Analysis on Proposed Networks....................................................... 23 2.8 System Real-Time Demo.......................................................................................... 26 2.8.1 Health Assessment Results................................................................................ 27 2.9 Conclusions and Future Work ................................................................................ 27 Chapter 3: Conditional Wasserstein Generative Adversarial Networks for Rebalancing Iris Image Datasets............................................................................................................. 29 3.1 Introduction .............................................................................................................. 29 3.2 Literature Review..................................................................................................... 32 3.2.1 GAN .................................................................................................................... 32 3.2.2 WGAN ................................................................................................................ 33 3.2.3 WGAN-GP ......................................................................................................... 34 3.2.4 CGAN & ACGAN ............................................................................................. 35 3.2.5 CWGAN-GP ...................................................................................................... 36 3.3 Method....................................................................................................................... 36 3.3.1 Proposed Method............................................................................................... 36 3.3.2 Extension Method.............................................................................................. 38 3.4. Experimental Results and Discussion.................................................................... 39 3.4.1 MNIST................................................................................................................ 39 3.4.2 CASIA-Iris-Thousand....................................................................................... 40 3.4.3 Evaluation with Frechet Inception Distance (FID) ........................................ 43 3.4.4 Model Complexity and Limitations................................................................. 44 3.5 Conclusion................................................................................................................. 45 Chapter 4: Super-Resolution Generative Adversarial Network Based on the Dual Dimension Attention Mechanism for Biometric Image Super-Resolution ................... 46 4.1 Introduction .............................................................................................................. 46 4.2 Literature Review..................................................................................................... 49 4.3 Materials and Methods ............................................................................................ 51 4.3.1 Proposed network architecture for SR............................................................ 51 4.3.1.1 Overall Network Architecture ...................................................................... 52 4.3.1.2 Attention Mechanism Module...................................................................... 53 4.3.2 The Kernel modules of Dual Dimension Attention Block.............................. 54 4.3.2.1 Channel Attention Module (CAM) .............................................................. 54 4.3.2.2 Spatial Attention Module (SAM)................................................................. 55 4.3.3 Overall Network Loss Function ....................................................................... 56 4.4 Experiments and Results ......................................................................................... 57 4.4.1 Iris Dataset Specification .................................................................................. 58 4.4.2 Face Dataset Specification ................................................................................ 58 4.4.3 Partition of Experimental dataset.................................................................... 58 4.4.3.1 Iris Dataset Partition..................................................................................... 59 4.4.3.2 Face Dataset Partition................................................................................... 60 4.4.4 Domain Knowledge of Biometrics.................................................................... 60 4.4.4.1 Common Procedure of Biometrics................................................................ 60 4.4.4.2 Iris Recognition Procedure ........................................................................... 62 4.4.4.3 Face Recognition Procedure......................................................................... 63 4.4.5 Details for Training and Parameters Tuning ................................................. 64 4.5 Experimental Results ............................................................................................... 64 4.5.1 Downstream Task: Iris Recognition ................................................................ 64 4.5.2 Downstream Task: Face Recognition .............................................................. 66 4.5.3 Visual Evolution................................................................................................. 67 4.5.4 Quantitative Evaluation.................................................................................... 69 4.5.5 The Comparison Between the Previous Work................................................ 71 4.6 Conclusion................................................................................................................. 73 Chapter 5: Conclusions and Future Work....................................................................... 74 5.1 Conclusions ............................................................................................................... 74 5.2 Possible Future Work............................................................................................... 76 References ........................................................................................................................... 77

    1. Fjær, E.L.; Landet, E.R.; McNamara, C.L.; Eikemo, T.A. The use of complementary and alternative
    medicine (CAM) in Europe. BMC complementary medicine and therapies 2020, 20, 1-9.
    2. Herman, P.M.; Craig, B.M.; Caspi, O. Is complementary and alternative medicine (CAM) cost-effective?
    A systematic review. BMC Complementary and alternative medicine 2005, 5, 1-15.
    3. Huang, C.-W.; Tran, D.N.H.; Li, T.-F.; Sasaki, Y.; Lee, J.A.; Lee, M.S.; Arai, I.; Motoo, Y.; Yukawa, K.;
    Tsutani, K. The utilization of complementary and alternative medicine in Taiwan: an internet survey
    using an adapted version of the international questionnaire (I-CAM-Q). Journal of the Chinese Medical
    Association 2019, 82, 665-671.
    4. Jensen, B. Iridology simplified; Book Publishing Company: 2012.
    5. Ma, L.; Li, N. Texture feature extraction and classification for iris diagnosis. In Proceedings of
    International Conference on Medical Biometrics; pp. 168-175.
    6. Tobore, I.; Li, J.; Yuhang, L.; Al-Handarish, Y.; Kandwal, A.; Nie, Z.; Wang, L. Deep learning
    intervention for health care challenges: some biomedical domain considerations. JMIR mHealth and
    uHealth 2019, 7, e11966.
    7. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition.
    Proceedings of the IEEE 1998, 86, 2278-2324.
    8. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In
    Proceedings of Proceedings of the IEEE conference on computer vision and pattern recognition; pp.
    3431-3440.
    9. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and
    semantic segmentation. In Proceedings of Proceedings of the IEEE conference on computer vision and
    pattern recognition; pp. 580-587.
    10. Sampath, V.; Maurtua, I.; Martín, J.J.A.; Gutierrez, A. A survey on generative adversarial networks for
    imbalance problems in computer vision tasks. Journal of big Data 2021, 8, 1-59.
    11. Ma, L.; Zhang, D.; Li, N.; Cai, Y.; Zuo, W.; Wang, K.J.I.j.o.b.; informatics, h. Iris-based medical analysis
    by geometric deformation features. 2012, 17, 223-231.
    12. DEMEA, A.L.S.J.A.T.N., Electronics; Telecommunications. Medical Diagnosis System based on iris
    analysis. 2009, 50.
    13. PUSHPALATHA, M.; MUTHURANI, K. An Labeled Observations Iridology For Diagnosing Kidney
    Disease.
    14. Othman, Z.; Prabuwono, A.S. Preliminary study on iris recognition system: Tissues of body organs in
    iridology. In Proceedings of 2010 IEEE EMBS Conference on Biomedical Engineering and Sciences
    (IECBES); pp. 115-119.
    15. Hussain, T.; Haider, A.; Muhammad, A.M.; Agha, A.; Khan, B.; Rashid, F.; Raza, M.S.; Din, M.; Khan,
    M.; Ullah, S. An Iris based Lungs Pre-diagnostic System. In Proceedings of 2019 2nd International
    Conference on Computing, Mathematics and Engineering Technologies (iCoMET); pp. 1-5.
    16. Hernandez, F.; Vega, R.; Tapia, F.; Morocho, D.; Fuertes, W. Early detection of Alzheimer's using digital
    image processing through iridology, an alternative method. In Proceedings of 2018 13th Iberian
    Conference on Information Systems and Technologies (CISTI); pp. 1-7.
    17. Commons, W. File:Three Main Layers of the Eye.png --- Wikimedia Commons{,} the free media
    repository. Availabe online:
    https://commons.wikimedia.org/w/index.php?title=File:Three_Main_Layers_of_the_Eye.png&oldid=3
    71960677 (accessed on 20 February 2020).
    18. Lim, Y.-W.; Park, Y.-B.; Park, Y.-J.J.E.J.o.I.M. A longitudinal study of iris parameters and their
    relationships with temperament characteristics. 2016, 8, 991-1000.
    19. Holl, R.M.J.A.h.p. Iridology: another look. 1999, 5, 35-43.
    20. Um, J.-Y.; An, N.-H.; Yang, G.-B.; Lee, G.-M.; Cho, J.-J.; Cho, J.-W.; Hwang, W.-J.; Chae, H.-J.; Kim, H.-
    R.; Hong, S.-H.J.T.A.j.o.C.m. Novel approach of molecular genetic understanding of iridology:
    relationship between iris constitution and angiotensin converting enzyme gene polymorphism. 2005,
    33, 501-505.
    21. Lodin, A.; Demea, S. Design of an iris-based medical diagnosis system. In Proceedings of 2009
    International Symposium on Signals, Circuits and Systems; pp. 1-4.
    22. Münstedt, K.; El-Safadi, S.; Brück, F.; Zygmunt, M.; Hackethal, A.; Tinneberg, H.-R.J.J.o.A.; Medicine,
    C. Can iridology detect susceptibility to cancer? A prospective case-controlled study. 2005, 11, 515-519.
    23. Hussein, S.E.; Hassan, O.A.; Granat, M.H.J.B.S.P.; Control. Assessment of the potential iridology for
    diagnosing kidney disease using wavelet analysis and neural networks. 2013, 8, 534-541.
    78
    24. Ernst, E.J.B.J.G.P. Complementary/alternative medicine: engulfed by postmodernism, anti-science and
    regressive thinking. 2009, 59, 298-301.
    25. Ernst, E.J.A.o.O. Iridology: not useful and potentially harmful. 2000, 118, 120-121.
    26. Zhao, C.; Li, G.-Z.; Wang, C.; Niu, J. Advances in patient classification for traditional Chinese medicine:
    a machine learning perspective. Evidence-Based Complementary and Alternative Medicine 2015, 2015.
    27. Chung, S.; Cha, S.; Lee, S.-Y.; Park, J.-H.; Lee, S.J.I.m.r. The five elements of the cell. 2017, 6, 452-456.
    28. Worsley, J.R. Classical five-element acupuncture: the five elements and the officials; JR and JB Worsley: 1998.
    29. Irisology talk. Availabe online:
    https://www.youtube.com/watch?v=oogtGRKxU2o&list=PL8OTrtNdZxX31ArC5iMzSYaikP2POSqYF
    (accessed on 21 April 2020).
    30. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural
    networks. In Proceedings of Advances in neural information processing systems; pp. 1097-1105.
    31. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of
    Proceedings of the IEEE conference on computer vision and pattern recognition; pp. 770-778.
    32. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for
    computer vision. In Proceedings of Proceedings of the IEEE conference on computer vision and pattern
    recognition; pp. 2818-2826.
    33. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks.
    In Proceedings of Proceedings of the IEEE conference on computer vision and pattern recognition; pp.
    4700-4708.
    34. Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; Fei-Fei, L. Imagenet: A large-scale hierarchical image
    database. In Proceedings of 2009 IEEE conference on computer vision and pattern recognition; pp. 248-
    255.
    35. Triwijayanti, A.; Suwastio, H.; Damayanti, R.J.T.-J.P.d.P.T., Kendali, Komputer, Elektrik, dan
    Elektronika. Lung disorders detection based on irises image using computational intelligent art. 2003,
    8.
    36. Adelina, D.C.; Sigit, R.; Harsono, T.; Rochmad, M. Identification of diabetes in pancreatic organs using
    iridology. In Proceedings of 2017 International Electronics Symposium on Knowledge Creation and
    Intelligent Computing (IES-KCIC); pp. 114-119.
    37. Permatasari, L.I.; Novianty, A.; Purboyo, T.W. Heart disorder detection based on computerized
    iridology using support vector machine. In Proceedings of 2016 International Conference on Control,
    Electronics, Renewable Energy and Communications (ICCEREC); pp. 157-161.
    38. Herlambang, R.A.N.P.; Isnanto, R.R.; Ajub, A.Z. Application of liver disease detection using iridology
    with back-propagation neural network. In Proceedings of 2015 2nd International Conference on
    Information Technology, Computer, and Electrical Engineering (ICITACEE); pp. 123-127.
    39. Miranda, J.D.; Salinas, S.A. Computational Measuring Approach for the Identification of Probable
    Intestinal System Pathologies through the Human Iris Parameters. In Proceedings of 2019 XXII
    Symposium on Image, Signal Processing and Artificial Vision (STSIVA); pp. 1-5.
    40. Tang, H.; Huang, W.; Ma, J.; Liu, L.J.C.m. SWOT analysis and revelation in traditional Chinese medicine
    internationalization. 2018, 13, 5.
    41. Huan, E.-Y.; Wen, G.-H.; Zhang, S.-J.; Li, D.-Y.; Hu, Y.; Chang, T.-Y.; Wang, Q.; Huang, B.-L. Deep
    convolutional neural networks for classifying body constitution based on face image. Computational and
    mathematical methods in medicine 2017, 2017.
    42. Wang, K.-C. THE FIVE ELEMENTS THEORY IN BUSINESS RESEARCH.
    43. Li, Y.-H.; Huang, P.-J.; Juan, Y.J.M.I.S. An Efficient and Robust Iris Segmentation Algorithm Using Deep
    Learning. 2019, 2019.
    44. Institute of Automation, Chinese Academy of Science: CASIA Iris Image Database. . Availabe online:
    http://www.cbsr.ia.ac.cn/china/Iris%20Databases%20CH.asp (accessed on 19 October 2021).
    45. Alpaydin, E. Introduction to machine learning; MIT press: 2020.
    46. Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio,
    Y. Generative adversarial networks. arXiv preprint arXiv:1406.2661 2014.
    47. Arjovsky, M.; Bottou, L. Towards principled methods for training generative adversarial networks.
    arXiv preprint arXiv:1701.04862 2017.
    48. Arjovsky, M.; Chintala, S.; Bottou, L. Wasserstein generative adversarial networks. In Proceedings of
    International conference on machine learning; pp. 214-223.
    49. Gulrajani, I.; Ahmed, F.; Arjovsky, M.; Dumoulin, V.; Courville, A. Improved training of wasserstein
    gans. arXiv preprint arXiv:1704.00028 2017.
    79
    50. Parkhi, O.M.; Vedaldi, A.; Zisserman, A. Deep face recognition. 2015.
    51. Taigman, Y.; Yang, M.; Ranzato, M.A.; Wolf, L. Deepface: Closing the gap to human-level performance
    in face verification. In Proceedings of Proceedings of the IEEE conference on computer vision and
    pattern recognition; pp. 1701-1708.
    52. Schroff, F.; Kalenichenko, D.; Philbin, J. Facenet: A unified embedding for face recognition and
    clustering. In Proceedings of Proceedings of the IEEE conference on computer vision and pattern
    recognition; pp. 815-823.
    53. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of 2016
    IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 27-30 June 2016; pp. 770-778.
    54. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region
    Proposal Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence 2015, 39,
    doi:10.1109/TPAMI.2016.2577031.
    55. Bell, S.; Zitnick, C.; Bala, K.; Girshick, R. Inside-Outside Net: Detecting Objects in Context with Skip
    Pooling and Recurrent Neural Networks. 2015.
    56. Sreeja, N. A weighted pattern matching approach for classification of imbalanced data with a fireworksbased algorithm for feature selection. Connection Science 2019, 31, 143-168.
    57. Wang, S.; Minku, L.L.; Chawla, N.; Yao, X. Learning from data streams and class imbalance. Connection
    Science 2019, 31, 103-104, doi:10.1080/09540091.2019.1572975.
    58. Khan, I.K.; Yogesh, M. An Analysis on Iris Segmentation Method for Non Ideal Iris Images like off-axis
    angle and distance acquired. The International Journal Of Engineering And Science (IJES) 2014, 3, 1-6.
    59. Kumar, S.; Lamba, V.K.; Jangra, S. Existing and Emerging Covariates of Iris Recognition. 2019.
    60. Wu, Z.; Gao, Y.; Li, L.; Xue, J.; Li, Y. Semantic segmentation of high-resolution remote sensing images
    using fully convolutional network with adaptive threshold. Connection Science 2019, 31, 169-184.
    61. Devi, D.; Biswas, S.K.; Purkayastha, B. Learning in presence of class imbalance and class overlapping
    by using one-class SVM and undersampling technique. Connection Science 2019, 31, 105-142.
    62. Sun, J.; Lang, J.; Fujita, H.; Li, H. Imbalanced enterprise credit evaluation with DTE-SBD: Decision tree
    ensemble based on SMOTE and bagging with differentiated sampling rates. Information Sciences 2018,
    425, 76-91.
    63. Wei, H.G.T. Logistic regression for imbalanced learning based on clustering. International Journal of
    Computational Science and Engineering 2019, 18, 54-64.
    64. Alcalá-Fdez, J.; Fernández, A.; Luengo, J.; Derrac, J.; García, S.; Sánchez, L.; Herrera, F. Keel data-mining
    software tool: data set repository, integration of algorithms and experimental analysis framework.
    Journal of Multiple-Valued Logic & Soft Computing 2011, 17.
    65. Wu, Q.; Zhu, B.; Yong, B.; Wei, Y.; Jiang, X.; Zhou, R.; Zhou, Q. ClothGAN: generation of fashionable
    Dunhuang clothes using generative adversarial networks. Connection Science 2020,
    10.1080/09540091.2020.1822780, 1-18, doi:10.1080/09540091.2020.1822780.
    66. Douzas, G.; Bacao, F. Effective data generation for imbalanced learning using conditional generative
    adversarial networks. Expert Systems with applications 2018, 91, 464-471.
    67. Zheng, M.; Li, T.; Zhu, R.; Tang, Y.; Tang, M.; Lin, L.; Ma, Z. Conditional Wasserstein generative
    adversarial network-gradient penalty-based approach to alleviating imbalanced data classification.
    Information Sciences 2020, 512, 1009-1023.
    68. Minaee, S.; Abdolrashidi, A. Iris-GAN: Learning to Generate Realistic Iris Images Using Convolutional GAN;
    2018.
    69. Yadav, S.; Chen, C.; Ross, A. Synthesizing Iris Images Using RaSGAN With Application in Presentation
    Attack Detection. In Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern
    Recognition Workshops (CVPRW), 16-17 June 2019; pp. 2422-2430.
    70. LeCun, Y.; Cortes, C.; Burges, C. MNIST handwritten digit database. Florham Park, NJ, USA: 2010.
    71. Endres, D.M.; Schindelin, J.E. A new metric for probability distributions. IEEE Transactions on
    Information theory 2003, 49, 1858-1860.
    72. Huszár, F. How (not) to train your generative model: Scheduled sampling, likelihood, adversary? arXiv
    preprint arXiv:1511.05101 2015.
    73. Mirza, M.; Osindero, S. Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 2014.
    74. Odena, A.; Olah, C.; Shlens, J. Conditional image synthesis with auxiliary classifier gans. In Proceedings
    of International conference on machine learning; pp. 2642-2651.
    75. Guldas, S. Efficient Learning on Imbalanced Image Set. International Journal of Computer Sciences and
    Engineering 2018, 6, 121-126, doi:10.26438/ijcse/v6i10.121126.
    80
    76. Liu, W.; Wen, Y.; Yu, Z.; Li, M.; Raj, B.; Song, L. Sphereface: Deep hypersphere embedding for face
    recognition. In Proceedings of Proceedings of the IEEE conference on computer vision and pattern
    recognition; pp. 212-220.
    77. Wen, Y.; Zhang, K.; Li, Z.; Qiao, Y. A discriminative feature learning approach for deep face recognition.
    In Proceedings of European conference on computer vision; pp. 499-515.
    78. Salimans, T.; Goodfellow, I.; Zaremba, W.; Cheung, V.; Radford, A.; Chen, X. Improved techniques for
    training gans. arXiv preprint arXiv:1606.03498 2016.
    79. Heusel, M.; Ramsauer, H.; Unterthiner, T.; Nessler, B.; Hochreiter, S. Gans trained by a two time-scale
    update rule converge to a local nash equilibrium. arXiv preprint arXiv:1706.08500 2017.
    80. Nguyen, K.; Fookes, C.; Sridharan, S.; Tistarelli, M.; Nixon, M. Super-resolution for biometrics: A
    comprehensive survey. Pattern Recognition 2018, 78, 23-42.
    81. Li, Y.-h.; Savvides, M. Iris Super-Resolution. 2009.
    82. Boucher, A.; Kyriakidis, P.C.; Cronkite-Ratcliff, C. Geostatistical solutions for super-resolution land
    cover mapping. IEEE Transactions on Geoscience and Remote Sensing 2007, 46, 272-283.
    83. Zhang, H.; Zhang, L.; Shen, H. A super-resolution reconstruction algorithm for hyperspectral images.
    Signal Processing 2012, 92, 2082-2096.
    84. Zhu, X.X.; Bamler, R. Demonstration of super-resolution for tomographic SAR imaging in urban
    environment. IEEE Transactions on Geoscience and Remote Sensing 2011, 50, 3150-3157.
    85. Milanfar, P. Super-resolution imaging; CRC press: 2017.
    86. Greenspan, H. Super-resolution in medical imaging. The computer journal 2009, 52, 43-63.
    87. Huang, Y.; Shao, L.; Frangi, A.F. Simultaneous super-resolution and cross-modality synthesis of 3D
    medical images using weakly-supervised joint convolutional sparse coding. In Proceedings of
    Proceedings of the IEEE conference on computer vision and pattern recognition; pp. 6070-6079.
    88. Capel, D.; Zisserman, A. Automated mosaicing with super-resolution zoom. In Proceedings of
    Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
    (Cat. No. 98CB36231); pp. 885-891.
    89. Krämer, P.; Benois-Pineau, J.; Domenger, J.-P. Local object-based super-resolution mosaicing from lowresolution video. Signal processing 2011, 91, 1771-1780.
    90. Gunturk, B.K.; Altunbasak, Y.; Mersereau, R.M. Super-resolution reconstruction of compressed video
    using transform-domain statistics. IEEE Transactions on Image Processing 2004, 13, 33-43.
    91. Li, K.; Zhu, Y.; Yang, J.; Jiang, J. Video super-resolution using an adaptive superpixel-guided autoregressive model. Pattern Recognition 2016, 51, 59-71.
    92. Caballero, J.; Ledig, C.; Aitken, A.; Acosta, A.; Totz, J.; Wang, Z.; Shi, W. Real-time video superresolution with spatio-temporal networks and motion compensation. In Proceedings of Proceedings of
    the IEEE Conference on Computer Vision and Pattern Recognition; pp. 4778-4787.
    93. Nasrollahi, K.; Escalera, S.; Rasti, P.; Anbarjafari, G.; Baro, X.; Escalante, H.J.; Moeslund, T.B. Deep
    learning based super-resolution for improved action recognition. In Proceedings of 2015 International
    Conference on Image Processing Theory, Tools and Applications (IPTA); pp. 67-72.
    94. Ryoo, M.S.; Rothrock, B.; Fleming, C.; Yang, H.J. Privacy-preserving human activity recognition from
    extreme low resolution. In Proceedings of Thirty-First AAAI Conference on Artificial Intelligence.
    95. Hong, C.; Yu, J.; Wan, J.; Tao, D.; Wang, M. Multimodal deep autoencoder for human pose recovery.
    IEEE Transactions on Image Processing 2015, 24, 5659-5670.
    96. Hong, C.; Yu, J.; Tao, D.; Wang, M. Image-based three-dimensional human pose recovery by multiview
    locality-sensitive sparse retrieval. IEEE Transactions on Industrial Electronics 2014, 62, 3742-3751.
    97. Baker, S.; Kanade, T. Limits on super-resolution and how to break them. IEEE Transactions on Pattern
    Analysis and Machine Intelligence 2002, 24, 1167-1183.
    98. Akae, N.; Makihara, Y.; Yagi, Y. Gait recognition using periodic temporal super resolution for low
    frame-rate videos. In Proceedings of 2011 international joint conference on biometrics (IJCB); pp. 1-7.
    99. Nguyen, K.; Sridharan, S.; Denman, S.; Fookes, C. Feature-domain super-resolution framework for
    Gabor-based face and iris recognition. In Proceedings of 2012 IEEE Conference on Computer Vision
    and Pattern Recognition; pp. 2642-2649.
    100. Yang, W.; Zhang, X.; Tian, Y.; Wang, W.; Xue, J.-H.; Liao, Q. Deep learning for single image superresolution: A brief review. IEEE Transactions on Multimedia 2019, 21, 3106-3121.
    101. Zhang, Y.; An, M. Deep learning-and transfer learning-based super resolution reconstruction from
    single medical image. Journal of healthcare engineering 2017, 2017.
    102. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio,
    Y. Generative adversarial nets. Advances in neural information processing systems 2014, 27.
    81
    103. Zhang, Y.; Li, K.; Li, K.; Wang, L.; Zhong, B.; Fu, Y. Image super-resolution using very deep residual
    channel attention networks. In Proceedings of Proceedings of the European conference on computer
    vision (ECCV); pp. 286-301.
    104. Dai, T.; Zha, H.; Jiang, Y.; Xia, S.-T. Image super-resolution via residual block attention networks. In
    Proceedings of Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops;
    pp. 0-0.
    105. Kim, D.; Kim, M.; Kwon, G.; Kim, D.-S. Progressive face super-resolution via attention to facial
    landmark. arXiv preprint arXiv:1908.08239 2019.
    106. Li, Q.; Yu, Z.; Wang, Y.; Zheng, H. TumorGAN: A multi-modal data augmentation framework for brain
    tumor segmentation. Sensors 2020, 20, 4203.
    107. Huang, C.-E.; Chang, C.-C.; Li, Y.-H. Mask Attention-SRGAN for Mobile Sensing Networks. Sensors
    2021, 21, 5973.
    108. Dong, C.; Loy, C.C.; He, K.; Tang, X. Learning a deep convolutional network for image super-resolution.
    In Proceedings of European conference on computer vision; pp. 184-199.
    109. Kim, J.; Lee, J.K.; Lee, K.M. Accurate image super-resolution using very deep convolutional networks.
    In Proceedings of Proceedings of the IEEE conference on computer vision and pattern recognition; pp.
    1646-1654.
    110. Ledig, C.; Theis, L.; Huszár, F.; Caballero, J.; Cunningham, A.; Acosta, A.; Aitken, A.; Tejani, A.; Totz,
    J.; Wang, Z. Photo-realistic single image super-resolution using a generative adversarial network. In
    Proceedings of Proceedings of the IEEE conference on computer vision and pattern recognition; pp.
    4681-4690.
    111. Zhang, Y.; Tian, Y.; Kong, Y.; Zhong, B.; Fu, Y. Residual dense network for image super-resolution. In
    Proceedings of Proceedings of the IEEE conference on computer vision and pattern recognition; pp.
    2472-2481.
    112. Lai, W.-S.; Huang, J.-B.; Ahuja, N.; Yang, M.-H. Deep laplacian pyramid networks for fast and accurate
    super-resolution. In Proceedings of Proceedings of the IEEE conference on computer vision and pattern
    recognition; pp. 624-632.
    113. Tai, Y.; Yang, J.; Liu, X.; Xu, C. Memnet: A persistent memory network for image restoration. In
    Proceedings of Proceedings of the IEEE international conference on computer vision; pp. 4539-4547.
    114. Kim, J.; Lee, J.K.; Lee, K.M. Deeply-recursive convolutional network for image super-resolution. In
    Proceedings of Proceedings of the IEEE conference on computer vision and pattern recognition; pp.
    1637-1645.
    115. Tai, Y.; Yang, J.; Liu, X. Image super-resolution via deep recursive residual network. In Proceedings of
    Proceedings of the IEEE conference on computer vision and pattern recognition; pp. 3147-3155.
    116. Haris, M.; Shakhnarovich, G.; Ukita, N. Deep back-projection networks for super-resolution. In
    Proceedings of Proceedings of the IEEE conference on computer vision and pattern recognition; pp.
    1664-1673.
    117. Tong, T.; Li, G.; Liu, X.; Gao, Q. Image super-resolution using dense skip connections. In Proceedings
    of Proceedings of the IEEE international conference on computer vision; pp. 4799-4807.
    118. Sajjadi, M.S.; Scholkopf, B.; Hirsch, M. Enhancenet: Single image super-resolution through automated
    texture synthesis. In Proceedings of Proceedings of the IEEE International Conference on Computer
    Vision; pp. 4491-4500.
    119. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv
    preprint arXiv:1409.1556 2014.
    120. Lim, B.; Son, S.; Kim, H.; Nah, S.; Mu Lee, K. Enhanced deep residual networks for single image superresolution. In Proceedings of Proceedings of the IEEE conference on computer vision and pattern
    recognition workshops; pp. 136-144.
    121. Rakotonirina, N.C.; Rasoanaivo, A. ESRGAN+: Further improving enhanced super-resolution
    generative adversarial network. In Proceedings of ICASSP 2020-2020 IEEE International Conference on
    Acoustics, Speech and Signal Processing (ICASSP); pp. 3637-3641.
    122. Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of Proceedings of the IEEE
    conference on computer vision and pattern recognition; pp. 7132-7141.
    123. Wang, F.; Jiang, M.; Qian, C.; Yang, S.; Li, C.; Zhang, H.; Wang, X.; Tang, X. Residual attention network
    for image classification. In Proceedings of Proceedings of the IEEE conference on computer vision and
    pattern recognition; pp. 3156-3164.
    82
    124. Li, K.; Wu, Z.; Peng, K.-C.; Ernst, J.; Fu, Y. Tell me where to look: Guided attention inference network.
    In Proceedings of Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition;
    pp. 9215-9223.
    125. Cao, C.; Liu, X.; Yang, Y.; Yu, Y.; Wang, J.; Wang, Z.; Huang, Y.; Wang, L.; Huang, C.; Xu, W. Look and
    think twice: Capturing top-down visual attention with feedback convolutional neural networks. In
    Proceedings of Proceedings of the IEEE international conference on computer vision; pp. 2956-2964.
    126. Jaderberg, M.; Simonyan, K.; Zisserman, A. Spatial transformer networks. Advances in neural information
    processing systems 2015, 28, 2017-2025.
    127. Bluche, T. Joint line segmentation and transcription for end-to-end handwritten paragraph recognition.
    Advances in Neural Information Processing Systems 2016, 29, 838-846.
    128. Miech, A.; Laptev, I.; Sivic, J. Learnable pooling with context gating for video classification. arXiv
    preprint arXiv:1706.06905 2017.
    129. Woo, S.; Park, J.; Lee, J.-Y.; Kweon, I.S. Cbam: Convolutional block attention module. In Proceedings of
    Proceedings of the European conference on computer vision (ECCV); pp. 3-19.
    130. Liu, Z.; Luo, P.; Wang, X.; Tang, X. Deep learning face attributes in the wild. In Proceedings of
    Proceedings of the IEEE international conference on computer vision; pp. 3730-3738.
    131. Large-scale CelebFaces Attributes (CelebA) Dataset. Availabe online:
    https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html (accessed on 19 October 2021).
    132. King, D.E. Dlib-ml: A machine learning toolkit. The Journal of Machine Learning Research 2009, 10, 1755-
    1758.

    QR CODE
    :::