跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張潔穎
chieh-ying chang
論文名稱: 考量碳排放量的城市物流計劃方法之發展
A planning method of city logistics considerations carbon emissions
指導教授: 呂俊德
Jun-Der Leu
口試委員:
學位類別: 碩士
Master
系所名稱: 管理學院 - 企業管理學系
Department of Business Administration
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 171
中文關鍵詞: 動態最小擴張樹城市物流容量限制設施選址路徑問題綠色物流
外文關鍵詞: dynamic minimum spanning tree, city logistics, capacitated location routing problem, green logistics
相關次數: 點閱:7下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 環保、永續發展已成全球共識,如何節能減碳成為各國努力目標。過去在城市物流
    研究中,包含了兩階層的設施選址問題、容量限制車輛路徑問題、時窗性同步城市物
    流系統等問題,使用啟發式解法對ㄧ二階層分別求解,目標皆以如何有效率地使用車
    輛、增進載貨效益、降低運輸成本等經濟上考量為主,卻未考慮碳排放量污染對於城
    市內交通、生活的影響。
    因此本研究提出一考慮碳排放量的城市物流綠色模型,在此模型下以最低碳排放量 為目標求解兩階層架構的城市物流中,第二階層多倉庫容量限制車輛路徑問題 (multidepot capacitated vehicle routing problem, MDCVRP)的問題,不僅考量車輛行駛距 離對碳排放量的影響,更將車輛行駛速度納入考慮,將城市中各路段的交通狀況以時 間軸表示,動態計算出車輛行駛產生的碳排放量,並可計算出車輛抵達各節點的時間
    求解方法則以容量限制設施選址路徑問題(capacitated location routing, CLR)模型做修 改,發展出動態最小擴張樹,使用劉繼仁(2012)的路段時間軸概念,推算出生成樹邊(路 段)碳排放量,樹節點的抵達時間,生成一個具順序性的動態最小擴張樹,求解車輛服 務路徑。
    最後將本研究方法以C語言寫出一程式,以五個數值例做方法驗證,證明方法可行性,
    進一步再以六十個例子比較本研究方法與Harks的容量限制設施選址路徑問題(CLR)模型
    方法求解結果差異,本研究方法達成其綠色目標,在整體碳排放量及平均每英里的碳 排放量方面皆達成效,並且在車輛總行駛英里數方面本研究方法優於以行駛距離最小 為目標的Harks方法。


    Past studies in city logistics to the main economic considerations, but did not consider the carbon emissions for city traffic and pollution. Therefore, this study presents a green model of city logistics takes into account carbon emissions to solve the multidepot capacitated vehicle routing problem. Not only considering the distance of vehicle, but will take into account the vehicle speed. The traffic situation in the various sections of the city to the timeline and calculated carbon emissions generated by vehicle. The method is based on capacitated location routing model,developing a dynamic minimum spanning tree to solve vehicle routing problem. Finally, generating five examples to prove the feasibility of the method and sixty examples to show the solution quality.

    摘要----------------------------------------------i ABSTRACT-----------------------------------------ii 目錄----------------------------------------------iii 圖目錄--------------------------------------------v 表目錄--------------------------------------------vii 第ㄧ章、緒論---------------------------------------1 1.1 研究背景與動機----------------------------------1 1.2 研究目的---------------------------------------1 1.3 研究範圍---------------------------------------1 1.4 研究方法與步驟----------------------------------1 第二章、問題陳述與分析------------------------------3 2.1 問題陳述---------------------------------------3 2.2 問題分析---------------------------------------4 2.3 城市物流模型------------------------------------6 第三章、模型發展-----------------------------------13 3.1 綠色城市物流想法--------------------------------13 3.1.1 物流運輸中碳排放量計算-------------------------14 3.1.1.1 劉繼仁模型----------------------------------14 3.1.1.2 本研究時間軸設定-----------------------------15 3.1.1.3 運輸網路中碳排放量計算方法的估計---------------16 3.1.2 容量限制設施選址路徑(CLR)模型-------------------18 3.2 綠色城市物流模型--------------------------------19 3.3 模型說明---------------------------------------20 3.3.1 運用原理-------------------------------------20 3.3.2 發展動態最小擴張樹構想-------------------------22 3.3.2.1 額外路徑解法--------------------------------23 3.3.2.2 額外路徑碳排放量的考量-----------------------24 3.3.3 最小碳量路徑演算法----------------------------26 3.3.4 步驟1 生成動態最小擴張樹-----------------------27 3.3.5 步驟2 移除單一客戶的超載需求--------------------28 3.3.4 步驟3 判別區域發貨中心分配的客戶總需求是否超過車容量---28 3.3.6 步驟4 分配區域發貨中心的超載服務需求-----------------28 3.3.7 步驟5 生成服務配送路徑-----------------------------30 3.3.7.1 計算區域發貨中心發車時間與路段碳排放量--------------30 3.4 求解方法-------------------------------------------32 3.4.1 求解方法意涵解釋-----------------------------------34 3.5 完整演算法說明--------------------------------------56 第四章、數值例驗證 -------------------------------------97 4.1 可行性驗證-----------------------------------------97 4.1.1 以本研究方法求解-----------------------------------97 4.1.2 以Harks的的容量限制設施選址路徑(CLR)模型方法求解-------99 4.2 求解品質驗證---------------------------------------105 第五章、討論------------------------------------------109 5.1 結論---------------------------------------------109 5.2 後續研究議題--------------------------------------109 參考文獻---------------------------------------------110 附錄-------------------------------------------------112

    Archetti, C., & Speranza, M. G. (2008). “The split delivery vehicle routing problem: A survey”,Springer US ,Vol.43, pp.103-122.

    Boventer, E. (1961). “The relationship between transportation costs and location rent in transportation problems”, Journal of Regional Science, Vol.3,No.2, pp.27-40.

    Crainic, T. G., Ricciardi, N., & Storchi, G. (2009). “Models for evaluating and planning city logistics systems”, Transportation science, Vol.43,No.4, pp.432-454.

    Dablanc, L. (2007). “Goods transport in large European cities: Difficult to organize, difficult to modernize “,Transportation Research Part A: Policy and Practice, Vol.41,No.3, pp. 280-285.

    Daskin, M. S. (2011). Network and discrete location: models, algorithms, and applications ,John Wiley & Sons.

    Doherty, S., & Hoyle, S. (2009). “Supply chain decarbonization: the role of logistics and transportation in reducing supply chain carbon emission”, World Economic Forum.

    Drexl, M. (2012). “Synchronization in vehicle routing-a survey of VRPs with multiple synchronization constraints”, Transportation Science, Vol.46,No.3, pp.297-316.

    Dror, M., & Trudeau, P. (1989). “Savings by split delivery routing”, Transportation Science, Vol.23,No.2, pp.141-145.

    Dufour, J. G. (2001). “L’émergence du problème des marchandises en ville en France et en Europe de l’Ouest”, TEC, Vol.163, pp.2-7.

    Perboli, G., Tadei, R., & Vigo, D. (2011). “The two-echelon capacitated vehicle routing problem: Models and math-based heuristics”, Transportation Science, Vol.45,No.3, pp. 364-380.

    Harks, T., König, F. G., & Matuschke, J. (2013). “Approximation algorithms for capacitated location routing ”,Transportation Science, Vol.47,No.1, pp.3-22.

    Hassanzadeh, A., Mohseninezhad, L., Tirdad, A., Dadgostari, F., & Zolfagharinia, H. (2009). Location-Routing Problem , pp. 395-417, Physica-Verlag HD.

    Hesse, M. (2008). The city as a terminal: The urban context of logistics and freight transport ,Ashgate Publishing, Ltd.

    Ho, W., Ho, G. T., Ji, P., & Lau, H. C. (2008). “A hybrid genetic algorithm for the multi- depot vehicle routing problem”, Engineering Applications of Artificial Intelligence, Vol. 21,No.4, pp.548-557.

    Jemai, J., Zekri, M., & Mellouli, K. (2012). “An NSGA-II algorithm for the green vehicle routing problem”, Springer Berlin Heidelberg, Vol.7245, pp.37-48.

    Jepsen, M., Spoorendonk, S., & Ropke, S. (2013). “A branch-and-cut algorithm for the symmetric two-echelon capacitated vehicle routing problem”, Transportation Science, Vol. 47,No.1, pp.23-37.

    Maranzana, F. E. (1964). “On the location of supply points to minimize transport costs”,Journal of the Operational Research Society, Vol.15,No.3, pp.261-270.

    Morris, A. G., Kornhauser, A. L., & Kay, M. J. (1999). “Getting the goods delivered in dense urban areas: a snapshot of the last link of the supply chain”, Journal of the Transportation Research Board, Vol.1653,No.1, pp.34-41.

    Patier, D. (2002). “La logistique dans la ville” ,Celse.

    Sumichras, R. T., & Markham, I. S. (1995). “A heuristic and lower bound for a multi-depot routing problem ”,Computers & operations research, Vol.22,No.10,pp.1047-1056.

    Toth, P., & Vigo, D. (2002). “Models, relaxations and exact approaches for the capacitated vehicle routing problem” ,Discrete Applied Mathematics, Vol.123,No.1,pp. 487-512.

    劉繼仁. (2012). “一個以⾞車輛途程規劃為基礎之綠⾊色物流配送計劃⽅方法之發展”, 中央⼤大 學企業管理學系碩⼠士學位論⽂文, pp.1-69.


    QR CODE
    :::