跳到主要內容

簡易檢索 / 詳目顯示

研究生: 王志宏
Jr-hung Wang
論文名稱: 1.1μm波長雙載子疊接式超螢光發光二極體
Bipolar Cascade Superluminescent Diodes at the 1.1μm Wavelength Regime
指導教授: 許晉瑋
Jin-wei Shi
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 96
語文別: 中文
論文頁數: 76
中文關鍵詞: 雙載子疊接式超螢光發光二極體
外文關鍵詞: Bipolar Cascade Superluminescent Diodes
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文裡,我們展示了雙載子疊接式超發光二極體利用在不同發光波長的量子井間,加入透納接面在不同發光波長的量子井之間,而元件中心波長約為1.04μm的生物光學治療之窗,我們元件引入透納接面,使得載子可以在不同的量子井間循環,把傳統式超螢光發光二極體因載子分佈不均勻而n側量子井沒有充分利用到的問題給減小,我們的元件展現出極小的漏電流,及克服了載子分佈不均勻的現象製作出一個應用在許多生物光學的近紅外白色光源。


    In this thesis, we demonstrate for the first time GaAs-based bipolar cascade superluminescent diodes (BC-SLDs), whose active region is composed of GaAs-based multiple quantum wells (MQWs) in series by a tunnel junction, operates around important bio-optical therapeutic window of 1.04-um wavelength. Due to the tunnel junction introducing carrier recycling in different QWs, non-uniform carrier distribution among distinct MQWs, that is a problem in conventional SLDs, whose electroluminescent spectrum is governed by the center wavelength of QWs near p-side, can be minimized. Our devices exhibit nice electrical characteristic of low leaky current and overcome the limit of non-uniform carrier distribution, presenting a promising prospect for fabricating and engineering a near infrared white-light source in lots of bio-optical applications.

    第一章 簡介..............................................1 1-1 導論 .................................................1 1-2 疊接式結構的應用......................................2 1-3延伸頻寬...............................................5 1-4 使載子分佈更為均勻....................................7 1-5 1.1um波長附近重要的應用---光學同調斷層攝影(Optical Coherence Tomography,OCT)................................9 1-6光學同調斷層攝影光源波長..............................11 第二章 理論.............................................13 2-1 超螢光二極體基本考量................................14 2-2 使用雙載子串接式結構之目的..........................17 2-3量子井設計............................................21 2-4雙載子串接式結構之基本原理............................25 第三章 元件製程.........................................28 第四章 量測結果與分析...................................37 4-1 在連續波操作下的發光二極體特性.......................38 4-2 雙載子疊接式超螢光發光二極體.........................44 第五章 結論.............................................52 參考資料.................................................53 附錄A....................................................57 量子井模擬Matlab.........................................57

    [1] J. T. Getty, ”Bipolar Cascade Segmented Ridge Lasers, ” Ph. D. Thesis of electrical and computer engineering Santa Barbara, Sep., 2003.
    [2] J.-W. Shi, J. –K. Sheu, C. –K. Wang, C. –C. Chen, C.-H. Hsieh, J. –I. Chyi, and W.-C. Lai, “Linear Cascade Arrays of GaN-Based, Green Light-Emitting Diodes for High-Speed and High-Power Performance,” IEEE Photon. Tech. Lett., vol. 19, no. 18, pp. 1368-1370, Sep., 2006.
    [3] T. Knodl, M. Golling, A. Straub, R. Jäger, R. Michalzik, and K. J. Ebeling, ”Multistage Bipolar Cascade Vertical-Cavity Surface-Emitting Lasers: Theory and Experiment,” IEEE J. of Selec. Topic in Quan. Electron.,vol. 9, no. 5, pp.1406-1414, Sep. , 2003.
    [4] J. P. Prineas, J. T. Olesberg, J. R. Yager, C. Cao, C. Coretsopoulos, and M. H. M.Reddy, “Cascaded active regions in 2.4 ?m GaInAsSb light-emitting diodes for improved current efficiency,” Appl. Phys. Lett. vol. 89, pp. 211108, Nov. , 2006.
    [5] J. Yan, J. Cai, G. Ru, X. Yu, J. Fan and F. –S. Choa, “InGaAsP–InP Dual-Wavelength Bipolar Cascade Lasers,” IEEE Photon. Tech. Lett., vol. 18, no. 16, pp. 1777-1779, Aug., 2006.
    [6] A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser,” Optical coherence tomography – principles and applications”, Rep. Prog. Phys., Vol. 66, pp. 239-303, 2003.
    [7] D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science, Vol. 254, pp.1178-1181, 1991.
    [8] A. F. Fercher, E. Roth, “Ophthalmic laser interferometry,” Proceedings of SPIE, Vol. 658, pp. 48-51, 1986.
    [9] Carmen Puliafitomet al., Optical Coherence Tomography of Ocular Diseases, Slack Inc, 1996.
    [10] Grrreats WS , “Ocular spectral characteristics as related to hazards from laser and other light sources”. Am J Ophthalmol, vol. 66 ,pp. 15-20, 1968.
    [11] Yimin Wang, J. Stuart Nelson, Zhongping Chen, “Optimal wavelength for ultrahigh-resolution optical coherence tomography,” Optics Express, vol. 11 , pp.1411-1417, 2003.
    [12] R. C. Yougquist, S. Carr, and D. E. N. Davies, “Optical coherence-domain reflectomerty : a new optical evaluation technique,” Opt. Lett., vol. 12, pp. 158-160, 1987.
    [13] W. Drexler, U. Morgner, F. X. Kartner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, ” In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett., Vol. 24, pp.1221-1223, 1999.
    [14] J. K. Ranka, R. S. Windeler, amd A. J. Stentz,“Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800nm”, Opt. Lett. Vol. 25, pp. 25-27, 2000.
    [15] I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, and J. G. Fujimoto, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,” Opt. Lett., Vol. 26, pp. 608-610, 2001.
    [16] J. M. Schmitt, S. L. Lee, and K. M. Yang, “Optical coherence microscope with enhanced resolving power in thick tissue”, Optics Communications., Vol. 142, pp. 203-207, 1997.
    [17] Carla C. Rosa, Vladimir Shidlovski, John A. Rogers, Richard B. Rosen , and Adrian Gh. Podoleanu, “Broadband SLD based source for retina investigations”, Proceedings of SPIE, Vol. 5690, pp. 540-547, 2005.
    [18] Vladimir Shidlovski, Jay Wei, ”Superluminescent Diodes for Optical Coherence Tomography,” Proceedings of SPIE, Vol. 4648 , pp. 139-147, 2002.
    [19] C. F. Lin and B. L. Lee, ”Extremely broadband AlGaAs/GaAs superluminescent diodes,” Appl. Phys. Lett., Vol. 71, pp.1598-1600, 1997.
    [20] C. E. Dimas, H. S. Djie and B. S. Ooi, Superluminescent diodes using quantum dots superlattice, J. Cryst. Growth, Vol. 288, pp.153-156, 2006
    [21] H. S. Djie, C. E. Dimas, and B. S. Ooi, “Wideband quantum-dash-in-well superluminescent diode at 1.6um,” IEEE Photon. Technol. Lett., Vol. 18,pp. 1747-1749, 2006.
    [22] M. L. Osowski, T. M. Cockerill, R. M. Lammert, D. V. Forbes, D. E. Ackley, and J. J. Coleman, “A strained layer InGaAs-GaAs-AlGaAs single quantum well broad spectrum LED by slective-area metalorganic chemical vapour deposition,” IEEE Photon Technol. Lett., Vol. 6, pp. 1289-1291, 1994.
    [23] B. S. Ooi, K. Mcllvaney, M. W. street, A. Helmy, S. G. Ayling, A. C. bryce, J. H. Marsh, and J. S. Roberts, “Selective quantum well intermixing in GaAs/AlGaAs structure using impurity-free vacancy diffusion,” IEEE J. Quantum Electron. , Vol. 33, pp. 1784-1793, 1997.
    [24] A. T. Semenov, V. K. Batovrin, I. A. Garmash, V. R. Shidlovsku, M. V. Shramenko, and S. D. Yakubovich,” (GaAl)As SQW superluminescent diodes with extremely coherence length,” Electron. Lett., Vol. 33, pp.315, 1995.
    [25] A. T. Semenov, L. A. Rivlin, S. D. Yakubovich, “Dynamics and spectra of semiconductor lasers”, J. Sov. Laser Research, Vol. 7, N 2, pp.57-206, 1986.
    [26] N. S. K. kwong, K. Y. Lau, N. Bar-Chaim , ”High-power, high-efficiency GaAlAs superluminescent diode with integral absorber for lasing suppression.”, IEEE J. Quantum Electron.,QE-25,N 3,pp. 696-704, 1989.
    [27] B. D. Paterson, J. E. Epler, B. Graf, H. W. Lehmann, H. C. Sigg., ” A Superluminescent diodes at 1.3μm with very low spectral modulation.”, IEEE J. Quantum Electron., QE-30, N 3, pp.703-712, 1994.
    [28] A. T. Semenov, V. R. Shidlovski, S. A. Safin. , “Wide-spectrum SQW superluminescent diodes at 0.8μm with bent optical waveguide.”, Electron. Letts.,Vol. 29, N 10, pp.854-856, 1993.
    [29] T. Tokayama, O. Imafuji, Y. Koichi et al., “100mW High-powe angle-stripe superluminescent diodes with new real refractive-index-guided self-aligned structure.”, IEEE Journal of Quantum Electron.,QE-32, N 11, pp. 1981-1987, 1996.
    [30] H. Yamazaki, A. Tomita, M. Yamaguchi, and Y. Sasaki, “Evidence of nonuniform carrier distribution in multiple quantum well lasers,” Appl. Phys. Lett., vol. 71, pp. 767–769, 1997.
    [31] B.-L. Lee, C.-F. Lin, L.-W. Laih, andW. Lin , “Experimental evidence of nonuniform carrier distribution in multiple-quantum-well laser diodes,” Electron. Lett., vol. 34, pp. 1230–1231, 1998.
    [32] C.-F. Lin, B.-R. Wu, L.-W. Laih, and T.-T. Shih, “Sequence influence of nonidentical InGaAsP quantum wells on broadband characteristics of semiconductor optical amplifiers/superluminescent diodes,” Opt. Lett., vol. 26, pp. 1099–1101, 2001.
    [33] M. J. Hamp, D. T. Cassidy, B. J. Robinson, Q. C. Zhao, D. A. Thompson, and M. Davies, “Effect of barrier height on the uneven carrier distribution in asymmetric multiple-quantum-well InGaAsP lasers,” IEEE Photon. Technol. Lett., vol. 10, pp. 1380–1382, Oct., 1998.
    [34] M. J. Hamp, D. T. Cassidy, B. J. Robinson, Q. C. Zhao, and D. A.Thompson, “Effect of barrier thickness on the carrier distribution in asymmetric multiple-quantum-well InGaAsP lasers,” IEEE Photon. Technol. Lett., vol. 12, pp. 134–136, Feb., 2000.
    [35] L. A. Coldren and S. W. Corzine, “Diode Lasers and Photonic Integrated Circuits,” chapter 4, John Wiley & Sons, New York, 1995.
    [36] C.-F. Lin, Y.-S. Su, C.-H. Wu, and G. S. Shmavonyan, “Influence of separate confinement heterostructure on emission bandwidth of InGaAsP superluminescent diodes/semiconductor optical amplifiers with nonidentical multiple quantum wells,” IEEE Photon. Technol. Lett., vol. 16, no. 6, pp. 1441–1443, Jun., 2004.
    [37] F. Dross, F. van Dijk, and B. Vinter, “Optimization of Large Band-Gap Barriers for Reducing Leakage in Bipolar Cascade Lasers,” IEEE J. of Quantum Electron., vol. 40, no. 8, pp. 1003-1007, Aug., 2004.
    [38] D. A. Neamen, “Semiconductor Physics and Devices,”chapter 8,McGraw-Hill.
    [39] L. A. Coldren and S. W. Corzine, “Diode Lasers and Photonic Integrated Circuits,” chapter 2, John Wiley & Sons, New York, 1995.
    [40] M. Sugo, Y. Shibata, H. Kamioka, M. Yamamoto and Y. Tohmori, “High-power (>50mW) and wideband (>50nm) 1.3?m super-luminescent diodes,” Electron. Lett., Vol. 41, no.8, 1993.

    QR CODE
    :::