跳到主要內容

簡易檢索 / 詳目顯示

研究生: 許哲瑋
Che-wei Hsu
論文名稱: 結合機械手臂之多功能輪型機器人
The multi-function wheel robot with a robotic arm.
指導教授: 王文俊
Wen-june Wang
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 100
語文別: 中文
論文頁數: 69
中文關鍵詞: 多感測器整合模糊控制器正向運動學逆向運動學自主避障
外文關鍵詞: Inverse kinematics, Forward kinematics, Fuzzy controller, Sensors integration, Obstacle avoidance
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要目的為完成具有於未知環境中自主避障功能,並利用裝置
    於機器人上方之機器手臂進行按鍵搭乘電梯功能之輪型機器人。在自主避障功能部份,透過由伺服馬達所推動之兩個平行輪進行移動,並利用FPGA整合超音波與紅外線距離感測器所感測的環境資訊,設計完善的避障策略與模糊控制器,使機器人能在未知環境中,即使於狹窄路徑中,安全前進並避開路徑中的障礙物。在按鍵搭乘電梯功能方面,透過正向運動學與逆向運動學,控制手臂按壓目標樓層的按鍵。同時機械手也提供簡單人機互動功能,如握手、招手。最後經過多次的實驗,本論文之控制策略與功能成功地實現於此輪型機器人上。


    The purpose of this study aims to accomplish a mobile robot which can take the elevator automatically by using its robotic arm and avoid the obstacle in an unknown environment. In the function of obstacle avoidance, the robot moves by two parallel wheels which are driven by servo motors. We use the sonar and infrared ray sensors integrated with FPGA to collect environmental
    information such that the robot can move forward with avoiding the obstacles and maintaining the safe distance in the unknown environment, even in the narrow path. In the function of elevator taking automatically, the robotic arm can press the target panel by interactively using forward kinematics and inverse kinematics. Furthermore, this robotic arm can also implement some interactive motions such as shaking hands and greeting. After a series of experiments, the results show that the robot works effectively.

    摘要 i Abstract ii 誌謝 iii 目錄 iv 圖目錄 vii 表目錄 xi 第一章 緒論 1 1.1研究背景與動機 1 1.2文獻回顧 2 1.3論文目標 4 1.4論文架構 4 第二章 系統架構與硬體介紹 5 2.1 系統架構與機構設計 5 2.2 機械手臂端硬體介紹 6 2.2.1 機械手臂肩部馬達與減速機介紹 7 2.2.2 機械手臂手肘與手腕馬達介紹 9 2.2.3 馬達驅動器介紹 10 2.3 感測器模組介紹 10 2.3.1 超音波感測器介紹 11 2.3.2 紅外線感測器介紹 11 2.3.3 觸碰開關介紹 12 2.3.4 FPGA 開發板介紹 13 2.4 機器人差動輪平台介紹 13 2.5 電腦端介紹 14 第三章 感測器整合與自主避障功能 16 3.1 感測器訊號處理 16 3.1.1 感測器的整合與傳輸 16 3.1.2 超音波感測器訊號處理 17 3.1.3 紅外線感測器訊號處理 17 3.1.4 觸碰感測器 (Touch button) 訊號處理 21 3.2 機器人移動-馬達控制策略 22 3.2.1 基本行進與轉向控制 23 3.2.2 轉彎控制策略 23 3.3 自主避障策略 24 3.4 FUZZY速度控制器 32 3.4.1 歸屬函數 33 3.4.2 模糊規則庫 34 第四章 機械手臂運作軌跡規劃與控制 35 4.1 運動學規劃 35 4.2 正向運動學 37 4.3 逆向運動學 41 4.3.1 機械手臂座標系定義 42 4.3.2 逆向運動學推算 43 4.4 機械手臂的控制 48 4.5 機械手臂按壓電梯面板之控制策略 49 4.5.1 關節簡化設計 50 4.5.2 關節運作軌跡 50 4.5.3 按壓力道設計 51 4.5.4 容忍誤差範圍 54 4.5.5 人機互動功能 54 第五章 實驗成果 56 5.1 實驗場景介紹 56 5.2 任務一,未知環境自主避障 58 5.3 任務二,狹窄路徑行走 60 5.4 任務三,按壓電梯按鈕 61 第六章 結論與未來展望 64 6.1 結論 64 6.2 未來展望 65 參考文獻 66

    [1] 賴一翔(王文俊教授指導),具搜尋與避障之自動跟隨機器人,國立中央大學電機工程研究所碩士論文,2009年6月。
    [2] 林玗瑾(王文俊教授指導),輪型機器人之影像辨識應用於跟隨人與電梯辨識,國立中央大學電機工程研究所碩士論文,2012年6月。
    [3] D. Nagahara and S. Takahashi, “Mobile robot control based on information of the scanning laser range sensor,” in Proceedings of IEEE International Conference on Advanced Motion Control, Mar. 2010, pp. 258-261.
    [4] Y. Liang, L. Xu, R. Wei, B. Zhu, and H. Hu, “Behavior-based fuzzy control for indoor cleaning robot obstacle avoidance under dynamic environment,” in Proceedings of International Conference on Measuring Technology and Mechatronics Automation, Jan. 2011, pp. 637-640.
    [5] Q. Y. Bao, S. M. Li, W. Y. Shang, and M. J. An, “A fuzzy behavior-based architecture for mobile robot navigation in unknown environments,” in Proceedings of International Conference on Artificial Intelligence and Computational Intelligence, Nov. 2009, pp. 257-261.
    [6] Q. Zhang, Y. F. Zhang and S. Y. Qin, “The object oriented analysis and modeling for obstacle avoidance of a behavior-based robot”, in Proceedings of IEEE International Conference on Systems, Man and Cybernetics, Oct. 2007, pp. 1545-1550.
    [7] M. Dupre and S. X. Yang, “Two-stage fuzzy logic-based controller for mobile robot navigation,” in Proceedings of IEEE International Conference on Mechatronics and Automation, Jun. 2006, pp. 745-750.
    [8] C. G. Rusu, I. T. Birou, and E. Szöke, “Fuzzy based obstacle avoidance system for autonomous mobile robot,” in Proceedings of IEEE International Conference on Automation Quality and Testing Robotics, May 2010, pp. 1-6.
    [9] S. Duan, Y. F. Li, S. Chen, L. P. Chen, L. Zou, Z.H. Ma, and J. Ding, “Study of obstacle avoidance based on fuzzy planner for wheeled mobile robot,” in Proceedings of IEEE International Conference on Intelligent Control and Automation, Jun. 2011, pp. 672-676.
    [10] T. Hseng, S. Li, S. J. Chang, and W. Tong, “Fuzzy target tracking control of autonomous mobile robots by using infrared sensors,” IEEE Transactions on Fuzzy Systems, pp. 491-501, vol. 12, no. 4, Aug. 2004.
    [11] A. Filipescu, I. Susnea, V. Minzu, G. Vasiliu, and S. Filipescu, “Obstacle avoidance and path following control of a WMR used as personal robotic assistant,” in Proceedings of IEEE International Conference on Control & Automation, Jun. 2010, pp. 1556-1560.
    [12] T. T. Quyen Bui, A. Widyotriatmo, L. H. Nguyen, and K. S. Hong, “Sonar-based collision avoidance and probabilistic motion model for mobile robot navigation,” in Proceedings of IEEE International Conference on Asian Control ,Aug. 2009, pp. 1462-1467.
    [13] R. J. Wain, C. M. Liu, and Y. W. Lin, “Design of switching path-planning control for obstacle avoidance of mobile robot,” Journal of the Franklin Institute, pp. 718-737, Feb. 2011.
    [14] T. Oikawa , T. Kon, Y. Choi, Y. Kubota, and K. Watanabe, “A method of supporting collision avoidance for mobile robots in a smart space,” in Proceedings of International Conference on Control, Automation and Systems, Oct. 2007. pp. 490-493.
    [15] C. Y. Lee, H. G. Choi, J. S. Park, K. Y. Park, and S. R. Lee, “Collision avoidance by the fusion of different beam-width ultrasonic sensors,” in Proceedings of IEEE International Conference on Sensors, Oct. 2007, pp. 985-988.
    [16] P. C. Hsieh and W. J. Kim, “Autonomous robotic wheelchair with collision-avoidance navigation and real-time path planning,” in Proceedings of IEEE International Conference on Advanced Intelligent Mechatronics, Jul. 2010, pp. 1396-1401.
    [17] G. Lee and N. Y. Chong, “Low-cost dual rotating infrared sensor for mobile robot swarm applications,” IEEE Transactions on Industrial Informatics, pp. 277-286, vol. 7, no. 2, May 2011.
    [18] Y. H. Yang, Y. L. Xu, X. Li, W. M. Chen, and Y. K. Chao, “Stereo vision-based arm control for service robot,” in Proceedings of IEEE International Conference on Control and Decision, May 2011, pp. 4048-4053.
    [19] J. M. Lee, B. S. Park, Y. S. Lee, J. S. Ahn, S. H. Lee, S. J. Lim, and C. S. Han, “The development of 6 D.O.F robot manipulator with human-friendly design,” in Proceedings of IEEE International Conference on Advanced Intelligent Mechatronics, Setp. 2007, pp. 1-6.
    [20] 彭彥嘉,六軸機械操作手臂-位置運動學分析,工研院機械所智慧系統工程技術組機械工業雜誌,2009年12月。
    [21] 潘奕璁(黃國勝教授指導),嵌入式機械手臂運動控制器之實作,國立中正大學電機工程研究所碩士論文,2010年6月。
    [22] 蔡柏謙(王文俊教授指導),基於逆向運動學之機械手臂控制,國立中央大學電機工程研究所碩士論文,2011年7月。
    [23] 陳漢忠(王文俊教授指導),智慧型搭乘電梯機器人,國立中央大學電機工程研究所碩士論文,2009年6月。
    [24] C. H. Kuo, Y. W. Lai, K. W. Chiu, and S. T. Lee, “Motion planning and control of interactive humanoid robotic arms,” in Proceedings of IEEE Workshop on Advanced robotics and Its Social Impacts, Aug. 2008, pp. 1-6.
    [25] H. I. Lin and C. L. Chen, “A hybrid control policy of robot arm motion for assistive robots,” in Proceedings of IEEE International Conference on Information and Automation, Jun. 2011, pp. 163-168.
    [26] J. M. Lee, B. S. Park, Y. S. Lee, J. S. Ahn, S. H. Lee, S. J. Lim, and C. S. Han, “The development of the robot manipulator for an intelligent service robot,” in Proceedings of SICE-ICASE International Joint Conference, Oct. 2006, pp. 282-287.
    [27] 減速機 AL095 相關網站,
    http://www.apexdyna.com/index_ch.asp,2011年10月。
    [28] 伺服馬達 SmartMotor 相關網站,
    http://www.animatics.com/,2011年10月。
    [29] 紅外線 Sharp GP2D12 相關網站,http://www.parallax.com/detail.asp?product_id=605-00003,2011年11月。
    [30] 類比與數位轉換IC ADC0831CCN 相關網站,http://www.playrobot.com/cart/index.php,2011年11月。
    [31] 王文俊,認識Fuzzy-第三版,全華科技圖書股份有限公司,2008年6月。

    QR CODE
    :::