在本實驗中,使用(1)Cu/Sn3.5wt%Ag/Cu以及(2)Cu/Sn/Cu兩種覆晶結構,實驗溫度於50℃~150℃,通以電流密度為10000 A/cm2的電流從0小時到200小時觀察電遷移效應誘發銅基材消耗情形。於(1)Cu/Sn3.5wt%Ag/Cu結構中,其銅基板消耗小於(2)Cu/Sn/Cu結構。為了更近一步知道銅在兩種銲料的消耗情形,以及介面反應現象,我們將銅線和銲料塊材施以機械力後接合,在實驗溫度150℃及200℃下進行固態反應,時間為0小時到500小時,以了解銅及銲料在固態下之消耗行為,銅在Sn3.5wt%Ag銲料塊接合之消耗量大於在銅在Sn銲料塊接合中之消耗,而與電遷移實驗之結果為銅在(2)Cu/Sn/Cu之消耗量大於在(1)Cu/Sn3.5wt%Ag /Cu中之消耗,此兩結果相反。此外,針對Sn3.5Ag銲料在電遷移實驗以及銅線對銲料塊材接合實驗消耗結果比較,銅消耗量在銅線和銲料塊材接合實驗大於電遷移實驗。在電遷移下銅消耗量速率反而下降,而我們推測在銲料中添加微量銀會產生抑制銅消耗的機制。
In this study, two flip-chip joint structures, (1)Cu/Sn3.5wt%Ag/Cu and (2)Cu/Sn/Cu were stressed with a high current density of 104 A/cm2 at 50~ 150℃for 0~200 hours. Electromigration induced Cu consumption was observed in the cathode Cu bond-pads of both current-stressed Cu/Sn/Cu and Cu/Sn3.5Ag/Cu flip-chip joint structures. Besides, EM-induced Cu consumption in the (1)Cu/Sn3.5wt%Ag/Cu flip-chip joint is smaller than that of (2)Cu/Sn/Cu structure. For further knowing the Cu consumption and the surface reaction between Cu and two solders, Cu wire was sandwiched in the solder plates at 150 ℃ and 200 ℃ for 0 ~500 hr. The result of the Cu consumption between Cu wire and Sn3.5Ag solder is relatively larger than that of the Cu wire and Sn solder case. The above results are opposite to the result of electromigration induced Cu consumption in the (2)Cu/Sn/Cu structure flip-chip joint, which is larger than that of the Cu/Sn3.5Ag/Cu flip-chip joint. According to decreasing of the Cu consumption rate under EM, we suspect adding minor Ag in solder would bring rise to the mechanism to inhibit Cu consumption.
1. P. J. Clarke, A. K. Ray, and C. A. Hogarth, International Journal of
Electronics, 69(3) , 1990
2. J. Tao, N. W. Cheung, and C. Hu, Electron Device Letters, 14(12),
1993
3. M. Sekiguchi, K. Sawada, M. Fukumoto, and T. Kouzaki, Journal of
Vacuum Science & Technology B, 12(5), 1994
4. C-K. Hu, K. Y. Lee, L. Gignac, and R. Carruthers, Thin Solid Films
308-309, 1997
5. V.C. Marcotte and N.G. Koopman, IEEE Transactions on Components,
Hybrids, and Manufacturing Technology, 5(4), 1982
6. J. H. Lau, Flip Chip Technologies (McGraw-Hill, 1996)
7. C. E. Ho, S. C. Yang, C. R. Kao, Journal of Materials Science:
Materials in Electronics, 18, 1-3, 2007
8. K. Zeng, K. N. Tu, Materials Science and Engineering R: Reports, 38, 2, 2002
9. A. Rahn, The Basics of Soldering (Wiley, 1993).
10. San Jose, The National Technology Roadmap for Semiconductors
(Semiconductor Industry Association, 2003)
11. J. H. Lau, Flip Chip Technologies (McGraw-Hill, 1996)
12. J. H. Lau, Chip on Board Technologies for Multichip Modules
(Kluwer Academic Pub, 1994)
13. 潘金平,基板型半導體構裝市場及技術趨勢,工業材料151期,1999
14. 呂宗興,電子構裝技術的發展歷程,工業材料 115 期,1996
15. S. Brandenbery and S. Yeh, Surface Mount International Conference
& Exposition: Proceedings of the Technical Program (Surface Mount
Technology Association, 1994)
16. C. Y. Liu, C. Chen, and K. N. Tu, Journal of Applied Physics, 88, 10, 2000
17. 陳文泰,錫銅無鉛銲料與Ni基材界面反應之研究,碩士論文,1991
18. 曾華偉,電遷移誘發錫/銅界面(錫,銅)原子通量之交互關係及其對
錫/銅焊點電遷移失效機制影響研究,博士論文,2011
19. 葉昱廷,電遷移對Sn5Ag/Cu界面反應的影響,碩士論文 2008
20. M. Y. Hsieh and H. B. Huntington, Journal of Physics and Chemistry of Solids, 39, (8), 1978