跳到主要內容

簡易檢索 / 詳目顯示

研究生: 楊智鈞
Chih-Jiun Yang
論文名稱: 無軸承離心泵中心偏移補償方法
The Compensation Method for Mass Eccentricity of Bearingless Centrifugal Pump
指導教授: 董必正
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 109
語文別: 中文
論文頁數: 112
中文關鍵詞: 磁浮軸承磁懸浮永磁同步馬達PID控制器干擾觀測器偏心補償快速傅立葉轉換通用型陷波濾波器
外文關鍵詞: Magnetic Bearing, Magnetic Levitation, Permanent Magnet Synchronous Motor, PID Controller, Disturbance Observer, Eccentricity Compensation, Fast Fourier Transform, Generalized Notch Filter
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在利用偏心補償演算法,使磁浮軸承控制迴路從轉子幾何中心修正為轉子質量中心,以降低轉子偏心現象以及其現象所造成之影響。
    實驗流程為使用磁浮軸承系統對無軸承離心泵之轉子進行懸浮控制,並利用系統鑑別取得轉子位置迴路模型,再利用驅動系統使轉子旋轉後,導入偏心補償演算法。並將導入偏心補償演算法前後之實驗結果分析、比較。


    The propose of the thesis is using an eccentricity compensation algorithm to modify the rotor position control from geometric center to mass center on the magnetic bearing control loop, so as to reduce the effects by rotor eccentricity.
    The process for experiment is to use the magnetic bearing system to maintain the rotor of bearingless centrifugal pump levitating and obtain the mathematical model of rotor position loop through performing system identification for the centrifugal pump. Then using the motor drive system to keep the rotor rotating and applying the eccentricity compensation algorithm. Furthermore, analyze and compare the experiment results of using eccentricity compensation algorithm with unused on the thesis.

    致謝 i 摘要 ii Abstract iii 目錄 iv 圖目錄 vii 第一章 緒論 1 1-1 研究動機與目的 1 1-2 文獻回顧 2 1-3 論文大綱 3 第二章 轉子中心偏移現象 4 2-1 剛體質點運動軌跡 5 2-2 磁浮軸承轉子旋轉軌跡 6 2-3 「無軸承離心泵控制」論文中之實驗結果 7 2-4 「CentriMag心室輔助裝置」中之運轉結果 9 第三章 研究裝置 11 3-1 前言 11 3-2 無軸承離心泵 11 3-2-1 轉子 12 3-2-2 定子與線圈繞組 12 3-2-3 感測器 15 3-2-4 控制驅動器 17 3-3 相關軟硬體 18 3-3-1 硬體 18 3-3-2 軟體 21 第四章 研究方法 23 4-1 前言 23 4-2 定義坐標系 24 4-3 軸承控制架構 29 4-4 驅動控制架構 30 4-5 系統鑑別 32 4-6 偏心補償演算法 37 4-6-1 演算法模型 39 第五章 實驗及結果 40 5-1 系統鑑別結果 40 5-2 模擬導入偏心補償演算法 46 5-2-1 模擬結果 47 5-3 偏心補償演算法實驗結果 52 5-4 實驗結果分析與比較 63 第六章 結論 68 第七章 參考文獻 69 中文文獻 69 外文文獻 70 第八章 附錄 I 8-1 永磁同步馬達驅動原理 I 8-2 薄片型轉子懸浮原理 III 8-3 實驗硬體電路圖及元件說明 X

    中文文獻
    〔1〕陳兆芸、林宗憲、王登茂和蘇崇賢,「磁浮軸承控制與轉子不平衡抑制探討」,2013綠色科技工程與應用研討會,2013年,5月15日。
    〔10〕呂東翰,「通用型陷波濾波器不平衡補償方法應用於磁浮軸承控制器開發」,國立中央大學,碩士論文,2017年。
    〔11〕吳韋德,「五軸磁浮軸承解耦演算與陷波濾波之控制研究」,國立中央大學,碩士論文,2018年。
    〔12〕江育昇,「無軸承離心泵控制」,國立中央大學,碩士論文,2019年。
    〔13〕修伯.瑞朵、艾博列.湯瑪士和巴爾列塔.娜塔列, 中華民國, I588370, 磁性轉子及具有磁性轉子之旋轉泵。
    〔19〕張祐毓,「初始位置估測與高頻注入法啟動應用於內藏式永磁同步馬達無感測器驅動」,國立中央大學,碩士論文,2016年。
    外文文獻
    〔2〕Earnshaw, S., "On the Nature of the Molecular Forces which Regulate the Constitution of the Luminiferous Ether. " Transactions of the Cambridge Philosophical Society, 7, p. 97, January 01, 1848 1848.
    〔3〕Ooshima, M., Chiba, A., Fukao, T., & Rahman, M. A., "Design and analysis of permanent magnet-type bearingless motors. " IEEE Transactions on Industrial Electronics, 43(2), pp. 292-299, Apr 1996.
    〔4〕Qinan Li, P. Boesch, M. Haefliger, J. W. Kolar, & Dehong, Xu, "Basic characteristics of a 4kW permanent-magnet type bearingless slice motor for centrifugal pump system", 2008 International Conference on Electrical Machines and Systems, pp. 3037-3042, 17-20 Oct. 2008, 2008.
    〔5〕Raggl, K., Nussbaumer, T., & Kolar, J. W., "A Comparison of Separated and Combined Winding Concepts for Bearingless Centrifugal Pumps. " Journal of Power Electronics, 9(2), pp. 243-258, Mar 2009.
    〔6〕Shafai, B., Beale, S., Larocca, P., & Cusson, E., "Magnetic Bearing Control-Systems and Adaptive Forced Balancing. " IEEE Control Systems Magazine, 14(2), pp. 4-13, Apr 1994.
    〔7〕Shi, J., Zmood, R., & Qin, L., "Synchronous disturbance attenuation in magnetic bearing systems using adaptive compensating signals. " Control Engineering Practice, 12(3), pp. 283-290, Mar 2004.
    〔8〕Burrows, C. R., & Sahinkaya, M. N., "Vibration Control of Multi-Mode Rotor-Bearing Systems. " Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 386(1790), pp. 77-94, 1983.
    〔9〕Herzog, R., Buhler, P., Gahler, C., & Larsonneur, R., "Unbalance compensation using generalized notch filters in the multivariable feedback of magnetic bearings. " IEEE Transactions on Control Systems Technology, 4(5), pp. 580-586, Sep 1996.
    〔14〕Reto, S., & Thomas, G., USA, 06351048, Electrical rotary drive.
    〔15〕Joseph Michael Maurio, & Edgar S. Thaxton, USA, US06020665, Permanent magnet synchronous machine with integrated magnetic bearings.
    〔16〕Tadashi Satoh, Masaru Ohsawa, & Satoshi Mori, USA, US06078119, Bearingless rotary machine.
    〔17〕大沢.將, 佐藤.忠, 森.敏 & 金光、陽一, JPA, JP1996084491, 軸受兼用モータ.
    〔18〕Reto, S., & Natale, B., USA, 06355998, Sensor arrangement in an electromagnetic rotary drive and a method for the operation of a rotary drive of this kind.
    〔20〕Yao, W. H., Tung, P. C., Fuh, C. C., & Chou, F. C., "A Robust Uncertainty Controller With System Delay Compensation for an ILPMSM System With Unknown System Parameters. " IEEE Transactions on Industrial Electronics, 58(10), pp. 4727-4735, Oct 2011.
    〔21〕Park, R. H., "Two-reaction theory of synchronous machines generalized method of analysis-part I. " Transactions of the American Institute of Electrical Engineers, 48(3), pp. 716-727, 1929.
    〔22〕──, "Two-reaction theory of synchronous machines-II. " Transactions of the American Institute of Electrical Engineers, 52(2), pp. 352-354, 1933.
    〔23〕Duesterhoeft, W. C., Schulz, M. W., & Clarke, E., "Determination of Instantaneous Currents and Voltages by Means of Alpha, Beta, and Zero Components. " Transactions of the American Institute of Electrical Engineers, 70(2), pp. 1248-1255, 1951.

    QR CODE
    :::