跳到主要內容

簡易檢索 / 詳目顯示

研究生: 葉庭碩
Ting-Shuo Yeh
論文名稱: Time-Series Study of Asteroid using CNEOST in Xuyi Observation Station, Purple Mountain Observatory, China
指導教授: 葉永烜
Wing-Huen Ip
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 天文研究所
Graduate Institute of Astronomy
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 60
中文關鍵詞: 小行星自轉週期巡天
外文關鍵詞: Asteroids, Rotation period, Sky survey
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 小行星的幾個重要的物理性質可以從光變曲線中取得,例如小行星的旋轉狀態(包含自轉週期以及自轉軸的指向等等)、形狀、內部結構和分類等等。此外,透過統計小行星的自旋狀態,我們還可以了解究竟有哪些機制會影響到小行星的自轉(例如碰撞,潮汐力和Yarkovsky–O’Keefe–Radzievskii–Paddack效應)。要對上述問題進行全面研究,便需要大量的小行星旋轉樣本。
    因此,我們透過台灣及中國的兩岸交流合作計畫,與中國紫金山天文台(PMO)合作,,使用其盱眙觀測站的「中國近地天體觀測望遠鏡」(CNEOST)蒐集大量小行星的光變曲線。這次合作的主要目標是發現快速自旋小行星(SFR),以及做小行星自旋頻率分布之統計。我們總共進行了兩次的合作巡天:(a)在2017年2月27日至3月2日期間以8分鐘的間距進行約40平方度天區的巡天,以及(b)在2018年3月9日至12日期間以10分鐘的間距,進行約50平方度天區的巡天。在第一次的巡天中,我們從1650條光曲線中獲得了217個具有高可信賴度的旋轉週期,在第二次測量中,則從2872條光曲線找出了332個具有高可信賴度的旋轉週期。
    這兩次的巡天所找到的小行星,幾乎全都是主帶小行星,此外我們也找到一些希爾達小行星和木星的特洛伊小行星。總共獲得了222個U=3的小行星旋轉週期,以及327個U=2的旋轉週期。在U=3的小行星中,我們發現了一個可能的超快自旋小行星,U = 2的小行星則有18個可能的目標。此外,我們發現了一個可能的雙小行星系統,(2280)Kunikov,在LCDB的資料中,(2280)Kunikov有著相對較長的旋轉週期,直徑約6.5公里。這顆小行星的光變曲線擁有類似於食雙星的特徵,例如相對較大的光變振幅,以及較尖的光變曲線。為了確定(2280)Kunikov是否真的為雙小行星系統,我們需要對其做後續的觀察。
    我們針對這次位於主小行星帶中不同位置的小行星,進行了不同大小的自旋速度分佈統計。然而結果顯示,自旋率分佈與小行星的大小和位置並沒有很明顯的關係。


    Several important physical properties of asteroid can be derived from light curve, such as rotation sense (e.g. rotation period and spin pole orientation), general shape (e.g., axis ratio estimated form light curve amplitude and shape model from light curve inversion), interior structure (i.e., the spin-rate limits of rubble-pile asteroids), and taxonomic type (e.g., phase-curve relation). Moreover, the statistics on asteroid spin rate and pole orientation are also important to understand how rotational states was affected by various mechanisms (e.g., mutual collision, tidal force and the Yarkovsky–O’Keefe–Radzievskii–Paddack effect). To have a comprehensive study on the aforementioned questions, it relies on a large sample of asteroid rotation.
    Therefore, we initiated our cross-strait bilateral collaboration with the Purple Mountain Observatory (PMO) to collect asteroid light curves using the CNEOST (Chinese Near-Earth Object Survey Telescope) at Xuyi Observation Station. The main goals of this collaboration are to discover super-fast rotators (SFRs) and to carry out asteroid spin-rate distribution. Two campaigns have been conducted: (a) a survey of ~40 deg2 using 8-min cadence during February 27 – March 2 2017, and (b) a survey of ~50 deg2 using 10-min cadence during March 9 – 12 2018. We obtained 217 reliable rotation periods out of 1650 light curves in the first survey and 332 reliable rotation periods out of 2872 light curves in the second survey.
    Almost all asteroids in our samples are the Main-Belt asteroids, and we detect some Hilda asteroids and Jupiter Trojans. In total, we obtained 222 rotation periods of U=3 (i.e. the quality code given by different reliability of light curve) and 327 of U=2, and among them, there are 1 SFR candidates of U=3 and 18 SFR candidates of U=2. Moreover, we found a binary candidate, asteroid (2280) Kunikov, which has a relatively long rotation period listed in the LCDB and is ~6.5 km in diameter. This asteroid shows a light curve with a large amplitude and a sharp similar to the feature of mutual eclipse. To confirm the binarity of (2280) Kunikov, we need more follow-up observations.
    We carried out the spin-rate distributions of asteroids of different sizes at different locations in main belt. The result shows that there is no obvious relation between the spin-rate distribution and the size and location of asteroid.

    Abstract i 摘要 iii 致謝 iv List of Figures vi List of Tables vii Chapter 1 Introduction 1 1.1 Small Solar System Bodies 1 1.2 Spectral Type of Asteroids 2 1.3 Time-Series Study of Asteroids 4 1.3.1 Light Curve 4 1.3.2 Spin-Rate Distribution 5 1.3.3 Super-Fast Rotator 8 Chapter 2 Observation, Data Reduction, Light-Curve Extraction, and Rotation Period Analysis 11 2.1 Observation 11 2.1.1 The China Near-Earth Object Survey Telescope (CNEOST) 11 2.1.2 Asteroid Rotation Period Surveys 11 2.2 Data Reduction 15 2.3 Light-Curve Extraction 15 2.4 Rotation Period Analysis 16 Chapter 3 Results and Discussion 18 Chapter 4 Summary 30 References 47

    [1] Behrend, R., Bernasconi, L., Roy, R. et al. (2006). Four new binary minor planets: (854) Frostia, (1089) Tama, (1313) Berna, (4492) Debussy. Astronomy and Astrophysics, 446, 1177–1184.
    [2] Bowell, E., Hapke, B., Domingue, D., et al. (1989), Asteroids II, 524
    [3] Carry, B. (2012). Density of asteroids. Planetary and Space Science, 73, 98–118.
    [4] Cellino, A., Hestroffer, D., Tanga, P., Mottola, S., & Dell'Oro, A. (2009), Astronomy and Astrophysics, 506, 935
    [5] Chang, C.-K., Ip, W.-H., Lin, H.-W., Cheng, Y.-C., Ngeow, C.-C., Yang, T.-C., Waszczak, A., Kulkarni, S. R., Levitan, D., Sesar, B., Laher, R., Surace, J., & Prince, T. A. (2014a). 313 New Asteroid Rotation Periods from Palomar Transient Factory Observations. Astrophysical Journal, 788, 17.
    [6] Chang, C.-K., Ip, W.-H., Lin, H.-W., Cheng, Y.-C., Ngeow, C.-C., Yang, T.- C., Waszczak, A., Kulkarni, S. R., Levitan, D., Sesar, B., Laher, R., Surace, J., & Prince, T. A. (2015). Asteroid Spin-rate Study Using the Intermediate Palomar Transient Factory. Astrophysical Journal Supplement Series, 219, 27.
    [7] Chang, C.-K., Lin, H.-W., & Ip, W.-H. (2016a). A Quick Test on Rotation Period Clustering for the Small Members of the Koronis Family. Astrophysical Journal, 816, 71. Chang, C.-K., Lin, H.-W., Ip, W.-H., Lin, Z.-Y., Kupfer, T., Prince, T. A., Ye, Q.-Z., Laher, R. R., Lee, H.-J., & Moon, H.-K. (2017). Confirmation of Large Super-fast Rotator (144977) 2005 EC127. Astrophysical Journal Letters, 840, L22.
    [8] Chang, C.-K., Lin, H.-W., Ip, W.-H., Prince, T. A., Kulkarni, S. R., Levitan, D., Laher, R., & Surace, J. (2016b). Large Super-fast Rotator Hunting Using the Intermediate Palomar Transient Factory. Astrophysical Journal Supplement Series, 227, 20.
    [9] Chang, C.-K., Waszczak, A., Lin, H.-W., Ip, W.-H., Prince, T. A., Kulkarni, S. R., Laher, R., & Surace, J. (2014b). A New Large Super-fast Rotator: (335433) 2005 UW163. Astrophysical Journal Letters, 791, L35.
    [10] Clark, M. (2016). Asteroid Photometry from the Preston Gott Observatory. Minor Planet Bulletin, 43, 132–135.
    [11] DeMeo, F. E. & Carry, B. (2014). Solar System evolution from compositional mapping of the asteroid belt. Nature, 505, 629–634.
    [12] Harris, A. W. (1996). The Rotation Rates of Very Small Asteroids: Evidence for ’Rubble Pile’ Structure, volume 27 of Lunar and Planetary Science Conference.
    [13] Harris, A. W.; Lagerros, J. S. V. (2002). Asteroids III, University of Arizona Press, Tucson, p.205-218
    [14] Harris, A. W., Pravec, P., Galád, A., Skiff, B. A., Warner, B. D., Világi, J., Gajdoš, Š., Carbognani, A., Hornoch, K., Kušnirák, P., Cooney, W. R., Gross, J., Terrell, D., Higgins, D., Bowell, E., & Koehn, B. W. (2014). On the maximum amplitude of harmonics of an asteroid lightcurve. Icarus, 235, 55–59.
    [15] Harris, A. W., Young, J. W., Bowell, E., Martin, L. J., Millis, R. L., Poutanen, M., Scaltriti, F., Zappala, V., Schober, H. J., Debehogne, H., & Zeigler, K. W. (1989). Photoelectric observations of asteroids 3, 24, 60, 261, and 863. Icarus, 77, 171–186.
    [16] Holsapple, K. A. (2007). Spin limits of Solar System bodies: From the small fast-rotators to 2003 EL61. Icarus, 187, 500–509.
    [17] Jewitt, D., Ishiguro, M., & Agarwal, J. (2013). Large Particles in Active Asteroid P/2010 A2. Astrophysical Journal Letters, 764, L5.
    [18] Kaasalainen, M., Torppa, J., & Muinonen, K. (2001), Icarus, 153, 37
    [19] Lang, D., Hogg, D. W., Mierle, K., Blanton, M., & Roweis, S. (2010). Astrometry.net: Blind Astrometric Calibration of Arbitrary Astronomical Images. Astronomical Journal, 139, 1782–1800.
    [20] Linville, D., Jiang, H., Michalik, D., Wilson, S., & Ditteon, R. (2017). Lightcurve Analysis of Asteroids Observed at the Oakley Southern Sky Observatory: 2016 July - October. Minor Planet Bulletin, 44, 173–176.
    [21] Masiero, J., Jedicke, R., Ďurech, J., Gwyn, S., Denneau, L., & Larsen, J. (2009). The Thousand Asteroid Light Curve Survey. Icarus, 204, 145–171.
    [22] McNeill, A., Fitzsimmons, A., Jedicke, R., Wainscoat, R., Denneau, L., Vereš, P., Magnier, E., Chambers, K. C., Kaiser, N., & Waters, C. (2016). Brightness variation distributions among main belt asteroids from sparse light-curve sampling with Pan-STARRS 1. , 459, 2964–2972.
    [23] Pravec, P., Kušnirák, P., Šarounová, L., Harris, A. W., Binzel, R. P., & Rivkin, A. S. (2002). Large coherent asteroid 2001 OE84, volume 500 of ESA Special Publication. Rozitis, B., Maclennan, E., & Emery, J. P. (2014). Cohesive forces prevent the rotational breakup of rubble-pile asteroid (29075) 1950 DA. Nature, 512, 174–176.
    [24] Rubincam, David Parry. (2000). Radiative Spin-up and Spin-down of Small Asteroids. Icarus, 148, 2–11.
    [25] Salo, H. (1987). Numerical simulations of collisions between rotating particles. Icarus, 70, 37–51.
    [26] Tedesco, E. F., Cellino, A., & Zappalá, V. (2005). The Statistical Asteroid Model. I. The Main-Belt Population for Diameters Greater than 1 Kilometer. Astronomical Journal, 129, 2869–2886.
    [27] Warner, B. D., Harris, A. W., & Pravec, P. (2009). The asteroid lightcurve database. Icarus, 202, 134–146.
    [28] York, D. G., Adelman, J., Anderson, Jr., J. E. et al. (2000). The Sloan Digital Sky Survey: Technical Summary. Astronomical Journal, 120, 1579–1587.

    QR CODE
    :::