跳到主要內容

簡易檢索 / 詳目顯示

研究生: 廖健盛
Chien-Sheng Liao
論文名稱: 臺北盆地液化潛能圖之製作
指導教授: 黃俊鴻
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 177
中文關鍵詞: 土壤液化SPT-N標準貫入試驗土壤液化潛能評估土壤液化潛能圖距離反比權重法
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 基於105年美濃地震液化情形對南臺灣造成之影響,本研究以行政院核定「安家固園計畫」,指示具液化潛能地區之縣市政府需製作中級土壤液化潛能地圖為參考理念,而繪製臺北盆地潛能圖。
    潛能圖工作主要為收集鑽孔資料、鑽探液化分析及土壤液化圖資製作。SPT-N值液化簡易評估法採用黃俊鴻等人(2005、2012)所開發之HBF法,來比較Seed法、JRA96法、NCEER法與AIJ法之結果,圖資建置軟體為使用ArcGIS 10,並檢核其中用於繪製內插液化潛能等級圖之IDW距離反比權重法。
    研究結果顯示HBF法與Seed法、NCEER法液化潛能圖結果較為相似,透過液化潛能等級與各取樣抗液化安全係數之比較,驗證HBF法與NCEER法最為接近,其次為Seed法,而JRA96法最為保守,AIJ法最不保守;而IDW固定式搜索比可變式搜索適用於搜尋液化潛能鑽孔。


    On February 6, 2016, the Mino earthquake caused a serious disaster in the Tainan area, so the Executive Yuan has indicated that the local governments with liquefaction potential areas is necessary to make a medium mapping liquefaction potential. Therefore, this thesis uses the above concept to draw the mapping liquefaction potential of Taipei Basin.
    The work of the potential mapping is mainly to collect the borehole data, execute the liquefaction analysis and produce soil liquefaction maps. The method of HBF was developed by Hwang et al. (2005, 2012), is adopted to be the method of SPT-N value liquefaction analysis in this research and compared the results with Seed (1985), JRA (1996), NCEER (1997) and AIJ (2001) methods. The research examine the search radius of Inverse Distance Weighted in ArcGIS 10, and further produce potential maps.
    The results of mapping liquefaction potential show that the HBF, the Seed and the NCEER are similar. According to the comparison of PL values and FS from different methods, the NCEER is the most similar to the HBF, the next one is the Seed. However, the JRA96 is the most conservative and the AIJ is the most opposite. The fixed search of IDW is more suitable than variable search for searching the boreholes of PL value.

    摘要 i Abstract ii 誌謝 iii 目錄 viiiv 圖目錄 viii 表目錄 xv 第一章 緒論1 1.1 前言1 1.2 研究動機與目的1 1.3 研究內容與流程3 第二章 文獻回顧5 2.1 臺北盆地5 2.1.1 地形與地質5 2.1.2 地下水位6 2.2 土壤液化7 2.2.1 土壤液化之定義7 2.2.2 影響土壤液化之因素8 2.3 SPT-N土壤液化簡易評估法11 2.3.1 Seed et al.法(1985)11 2.3.2 日本道路協會JRA法 (1996)16 2.3.3 美國地震工程研究中心NCEER法(1997)19 2.3.4 日本建築學會AIJ法(2001)22 2.3.5 雙曲線函數HBF法(2012)26 2.4 地理資訊應用相關概述30 2.4.1 地理資訊系統30 2.4.2 地質空間內插法31 2.5 臺北盆地液化潛能圖回顧32 2.5.1 台北桃園地區液化潛能圖之製作研究(2003)32 2.5.2 臺灣地區液化潛能製圖(2011)34 2.5.3 臺北市土壤液化潛勢圖製作(2017)35 第三章 研究方法37 3.1 鑽孔資料蒐集與處理37 3.1.1 鑽孔資料檢核與補值規範38 3.1.2 鑽孔補值分級與篩選46 3.2 地圖圖資蒐集與整理51 3.2.1 Shapefile檔案51 3.2.2 影像格式檔案52 3.2.3 WMS介接服務52 3.3 液化評估分析程式使用與說明54 3.3.1 鑽孔參數輸入介面54 3.3.2 液化計算輸出介面59 第四章 IDW地質空間內插法檢核62 4.1 可變式搜索簡易案例探討65 4.1.1 未輸入搜索最大半徑距離之案例67 4.1.2 未輸入搜索已知點數量之案例71 4.1.3 同時輸入搜索已知點數量與搜索最大半徑距離之案例72 4.2 固定式搜索簡易案例探討76 4.2.1 未輸入搜索已知最小點數量之案例78 4.2.2 未輸入搜索半徑距離之案例81 4.2.3 同時輸入搜索半徑距離與搜索已知最小點數量之案例82 4.3 可變式與固定式搜索結果比較86 第五章 研究結果探討88 5.1 液化潛能製圖準備88 5.1.1 臺北盆地工程地質微分區88 5.1.2 各鑽孔資料庫整理與比對92 5.1.3 繪製潛能圖IDW參數設置96 5.2 液化潛能圖成果與說明98 5.3 液化潛能結果與鑽孔數據探討111 5.3.1 各液化評估法與HBF法之結果比較111 5.3.2 鑽孔參數統計分佈圖120 5.3.3 各來源資料庫鑽孔N值隨深度變化之關係126 5.4 Ishihara相對液化厚度之研究135 5.4.1 Ishihara(1985)相對液化厚度判定135 5.4.2 Ishihara(1985)相對液化厚度更改H2之判定145 第六章 結論與建議153 6.1 結論153 6.2 建議154 參考文獻155

    [1]中研院地理資訊科學研究專題中心網頁,http://gis.rchss.sinica.edu.tw (2018)。
    [2]中華民國內政部營建署,「建築物基礎構造設計規範」(2001)。
    [3]中華民國內政部國土測繪中心網頁,
    https://www.nlsc.gov.tw (2018)。
    [4]日本建築學會,「建築基礎構造設計指針」(2001)。
    [5]日本道路協會,「道路橋示方書‧同解說,V耐震設計編」(1996)。
    [6]內政部地政整合資訊服務共享協作平台,https://cop.land.moi.gov.tw (2018)。
    [7]台灣世曦工程顧問股份有限公司,「新北市土壤液化潛勢圖資第一期建置暨示範補強案委託技術服務」(2017)。
    [8]台灣世曦工程顧問股份有限公司,「106年臺北市土壤液化潛勢圖製作暨地質鑽探補充調查專業服務工作」(2018)。
    [9]吳偉特,「台灣地區砂性土壤液化潛能之初步分析」,土木水利,第六卷,第二期,第39-70頁(1979)。
    [10]李咸亨,「液化潛能評估準則之研究」,國家地震工程研究中心(1997)。
    [11]李咸亨,「台北市地質鑽孔資訊化計畫第一期研究報告」,台北市政府工務局(1999)。
    [12]李崇正、熊大綱,「台北盆地土壤液化潛能圖之著作研究(I)」,國家地震工程研究中心(1999)。
    [13]李崇正、熊大綱,「台北桃園地區液化潛能圖之製作研究」,國家地震工程研究中心(2003)。
    [14]國家地震工程研究中心,「新北市土壤液化潛勢圖資第一期建置暨示範補強工程總顧問案服務建議書」(2016)。
    [15]黃俊鴻、楊志文、陳正興,「本土化液化評估方法之建議-雙曲線液化強度曲線」,地工技術,第103期,第53-64頁(2005)。
    [16]黃俊鴻、陳正興、莊長賢,「本土HBF土壤液化評估法之不確定性」,地工技術,第133 期,第77-86 頁(2012)。
    [17]楊志文,「全機率土壤液化評估法之研究」,國立中央大學土木工程學系博士論文,中壢(2003)。
    [18]楊炫智、盧志杰、游騰瑞,「美濃地震台南地區土壤液化災害與因應對策」,技師期刊,第77期,第25-35頁(2017)。
    [19]經濟部中央地質調查所網頁,
    https://www.moeacgs.gov.tw (2018)。
    [20]經濟部水利署地理資訊服務平台網頁,
    https://gic.wra.gov.tw (2018)。
    [21]鄭富書、朱家德、黃燦輝,「台灣一些軟弱岩石的工程性質,1994岩盤工程研討會論文集」,中壢,第259-267頁(1994)。
    [22]盧志杰,「NCREE液化評估程式說明與驗證」,國家地震工程研究中心(2016)。
    [23]盧志杰,「本土SPT-based HBF液化評估分析程式(V04)說明」,國家地震工程研究中心(2017)。
    [24]謝昇航,「臺灣地區液化潛能製圖」,國立中央大學應用地質研究所碩 士論文,中壢(2011)。
    [25]簡連貴、林敏清、陳怡伶,「全國液化基本圖之建置-台北縣、基隆市及宜蘭縣」,國家地震工程研究中心(2003)。
    [26]ArcGIS Desktop網頁,http://desktop.arcgis.com (2018)。
    [27]Chung, K.Y.C., and Wong I.H., “Liquefaction Potential of Soils With Plastic Fines,” Soil Dynamics And Earthquake Engineering Conference, Southampton, July (1982).
    [28]Finn, W.D. Liam, “Liquefaction Potential: Developments Since 1976,” International Conferences on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics (1981).
    [29]Ishibashi, I., Sherif, M.A., and Cheng, W.L., “The Effects of Soil Parameters on Pore-Pressure-Rise and Liquefaction Prediction,” Soils and Foundations, Vol. 22, No.1, pp. 39-48 (1982).
    [30]Ishihara, K., Sodekawa, M., and Tanaka, Y., “Effects of Overconsolidation on Liquefaction Characteristics of Sands Containing Fines,” Dynamic Geotechnical Testing, ASTM, STP 654, pp. 246-264 (1978).
    [31]Ishihara, K., “Stability of Natural Deposits during Earthquakes,” Proceedings, 11th International Conference on Soil Mechanics and Foundation Engineering, 1, Rotterdam, pp. 321-376 (1985).
    [32]Ishihara, K., “Manual for Zonation on Seismic Geotechnical Hazards,” The Japanese Society of Soil Mechanics and Foundation Engineering, Tokyo (1993).
    [33]Iwasaki, T., Arakawa, T. and Tokita, K.I., “Simplified Procedures for Assessing Soil Liquefaction During Earthquake,” Proc. of the Conference on Soil Dynamics and Earthquake Engineering, Volume II, pp. 925-935 (1982).
    [34]Japan Road Association, “Specification For Highway Bridges, Part V: seismic design,” (1990).
    [35]Lee and Fitton, “Factors Affecting The Cyclic Loading Strength of Soil,” Vibration Effects of Earthquakes on Soils and Foundations, ASTM, STP 450, pp 71-96 (1969).
    [36]Seed, H.B. and Peacock, William H., “Test Procedure for Measuring Soil Liquefaction Characteristics,” Journal of the Geotechnical Engineering Division, ASCE, Vol. 101, No.GT6, June, pp 1099-1119 (1971).
    [37]Seed, H.B., and Idriss, I.M., “Simplified procedure for evaluating soil liquefaction potential,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 107, No.SM9, pp. 1249-1274 (1971).
    [38]Seed, H.B., Tokimatsu, K., Harder, L.F., and Chung, R.M., “The influence of SPT procedures in soil liquefaction resistance evaluation,” Journal of Geotechnical Engineering, ASCE, Vol. 111, No.12, pp. 1425-1445 (1985).
    [39]Seed, H.B. and Harder, L.F., “SPT-Based analysis of cyclic pore pressure generation and undrained residual strength,” in J.M. Duncan ed., Proceedings, H. Bolton Seed Memorial Symposium, University of California, Berkeley, California, Vol. 2, pp. 351-376 (1990).
    [40]Terzaghi, K. and Peck, R.B. “Soil Mechanics in Engineering Practice, 2nd edition,” John Wiley and Sons, New York (1967).
    [41]Watson, D. F., and G. M. Philip. “A Refinement of Inverse Distance Weighted Interpolation.”Geoprocessing 2: pp. 315–327 (1985).
    [42]Youd, T.L., and Idriss, I.M., “Proceedings of the NCEER Workshop on Evaluation of Liquefaction Resistance of Soils,” Technical Report NCEER-97-0022 (1997).

    QR CODE
    :::