| 研究生: |
闕呂叡 Lu-jui Chueh |
|---|---|
| 論文名稱: |
適用於使用者來源追蹤之數位視訊浮水印設計 A Practical Design of Digital Video Watermarking for Tracking |
| 指導教授: |
蘇柏齊
Po-chyi Su |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 資訊工程學系 Department of Computer Science & Information Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 49 |
| 中文關鍵詞: | 數位浮水印 、部分解碼 、SIFT 、盲偵測 |
| 外文關鍵詞: | digital watermark, partially decoding, SIFT, blind detection |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於網際網路的蓬勃發展與資料壓縮技術的進步,大量的多媒體影音資訊在網路上被傳遞與下載。數位視訊因具有較高的商業價值與娛樂性,加上影音分享平台的普及,享受數位視訊串流已成為現今普遍的娛樂活動之一。然而,雖然使用者獲得了影視訊數位化所帶來的便利,數位資料的任意散佈引發了影音版權所有人的疑慮,數位智權管理因此成為現今重要的議題。數位浮水印被提出作為協助智權保護的工具之一,其中一項功能是用來追蹤多媒體資料的非法散佈者,即視訊所有人或提供者將資料傳送給某位合法使用者之前,將代表該使用者的資料嵌入於數位視訊當中,在發現某個在網路上流傳的數位視訊後,我們可由該視訊中偵測數位浮水印,一來可依其內容追蹤惡意散佈來源,二來或可用於降低使用者任意無償分享的意願。在本論文中,我們提出以追蹤來源為主要應用的數位視訊浮水印機制,在網路上經常作為分享的MPEG-4視訊中嵌入代表使用者的數位浮水印。為了減少視訊伺服器端嵌入浮水印所需耗費的龐大時間,我們利用部分解碼的方式實作壓縮域浮水印。同時,本機制利用SIFT在選定的畫面中決定嵌入與偵測浮水印位置,以利浮水印訊號在轉檔或是畫面形變後仍能進行盲偵測,另透過成對浮水印的設計以及浮水印位移的方法,增加使用者內容嵌入量以及避免偵測端誤判。實作上考量了數位浮水印的強韌性、不可視性與容量等議題,實驗結果展示此方法的可行性。
With the rapid growth of networking technologies and the advances of data compression, a large number of multimedia files are transmitted, shared and downloaded. Due to the high commercial values and entertainment, digital videos are popular and watching digital video streams has become a common activity in our daily life. Although the users do enjoy the convenience from the digital video streaming, the illegal spreading of copyrighted videos draws concerns from content owners or creators. Digital watermark is proposed as a tool for protecting the intellectual property right. One of its functions is fingerprinting. That is, the content owner will embed the fingerprint, which represents the identity of the recipient, into the digital videos. Once an illegal copy is found, we may detect the watermark and trace the origin of illegal distribution. In this research, we propose a practical fingerprinting scheme for digital video streaming. We embed the watermarks into widely used MPEG-4 videos. In order to avoid the heavy computational burden in the video servers, the watermark is embedded into partially decoded data. SIFT is employed to facilitate the “blind detection” even after the video transcoding. The visibility, capacity, robustness and false detection are examined to satisfy the requirements of such applications. The experimental results show the feasibility of the proposed scheme.
[1] I. Cox, M. Miller, J. Bloom, J. Fridrich, and T. Kalker, “Digital watermarking and steganography,” Morgan Kaufman, 2007.
[2] F. Hartung and B. Girod, “Digital watermarking of raw and compressed video,” in Proc. SPIE Digital Compression Technologies and Systems for Video Communication, Vol. 2952, Los Angeles, CA, 1996, pp. 205–213.
[3] F. Hartung, B. Girod, “Watermarking of MPEG-2 encoded video without decoding and re-encoding,” in Proceedings Multimedia Computing and Networking (MMCN), San Jose, CA, 1997.
[4] V. Darmstaedter, J.-F. Delaigle, D. Nicholson, B. Macq, “A block based watermarking technique for MPEG-2 signals: Optimization and validation on real digital TV distribution links,” in Proc. European Conference Multimedia Applications, Services and Techniques, Berlin, Germany, 1998, pp. 190–206.
[5] J. Dittmann, M. Stabenau, R. Steinmetz, “Robust MPEG video watermarking technologies,” in Proc. ACM Multimedia, Bristol, U.K., 1998, pp. 71–80.
[6] T.-Y. Chung, M.-S. Hong, Y.-N. Oh, D.-H. Shin, S.-H. Park, “Digital watermarking for copyright protection of MPEG-2 compressed video,” IEEE Transaction on Consumer Electronics 44 (1998) 895–901.
[7] D. Simitopoulos, S. A. Tsaftaris, N. V. Boulgouris, M. G. Strintzis, “Compressed-domain video watermarking of MPEG streams,” in: IEEE Int. Conf. Multimedia and Expo., Vol. 1, 2002, pp. 569–572.
[8] G. C. Langelaar, R. L. Lagendijk, “Optimal differential energy watermarking of DCT encoded images and video,” IEEE Trans. on Image Processing 10 (1) (2001) 148–158.
[9] M. Barni, F. Bartolini, N. Checcacci, “Watermarking of MPEG-4 video objects,” IEEE Transactions on Multimedia 7 (1) (2005) 23–32.
[10] A. M. Alattar, E. T. Lin, and M. U. Celik, “Digital watermarking of low bit-rate advanced simple profile MPEG-4 compressed video,” IEEE Transactions on Circuits and Systems for Video Technology: Special Issue on Authentication, Copyright Protection, and Information Hiding, vol. 13, no. 8, pp. 787-800, August 2003.
[11] J. Zhang, A. Ho, G. Qiu, P. Marziliano, Robust video watermarking of H.264/AVC,” IEEE Transactions on Circuits and System-II: Express Briefs, Vol. 54, 2007, pp. 205–209.
[12] A. Mansouri, A. Aznaveh, F. Torkamani-Azar, F. Kurugollu, “A low complexity video watermarking in H.264 compressed domain,” IEEE Transactions on Information Forensics and Security 5 (2010) 649– 657.
[13] M. Yang, N. Bourbakis, “A high bitrate information hiding algorithm for digital video content under H.264/AVC compression,” IEEE Int. Sym. On Circuits and Systems, Vol. 2, 2005, pp. 935–938.
[14] Ersin Esen and A. Aydin Alatan, “Robust video data hiding using forbidden zone data hiding and selective embedding,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 21, no. 8, Aug. 2011 pp.1130-1138,
[15] G. Qiu, P. Marziliano, A. Ho, D. He, Q. Sun, “A hybrid watermarking scheme for H.264/AVC video,” Proceedings of the 17th International Conference on Pattern Recognition, ICPR, Vol. 4, 2004, pp. 865–868.
[16] M. Noorkami, R. M. Mersereau, “Compressed-domain video watermarking for H.264,” Proceedings of the International Conference on Image Processing, ICIP, Vol. 2, 2005, pp. 890–893.
[17] M. Noorkami, R. M. Mersereau, “A framework for robust watermarking of H.264-encoded video with controllable detection performance,” IEEE Trans. Inf. Forensics Security, Vol. 2, 2007, pp. 14–23.
[18] M. Noorkami, R. M. Mersereau, “Digital video watermarking in P-frames with controlled video bit-rate increase,” IEEE Trans. on Information Forensics and Security, Vol. 3, 2008, pp. 441–455.
[19] G.-Z. Wu, Y.-J. Wang, W.-H. Hsu, “Robust watermark embedding/detection algorithm for H.264 video,” Journal of Electronic Imaging, Vol. 14, 2005.
[20] Po-Chyi Su, Chih-Wei Hsu and Ching-Yu Wu, “A practical design of content protection for H.264/AVC compressed videos by selective encryption and fingerprinting,” Multimedia Tools and Applications, vol. 52, Issue 2, pp. 529-549, April, 2011.
[21] J. J. K. Ruanaidh and T. Pun, “Rotation, scale and translation invariant digital image watermarking,” Signal Processing, vol. 66, no. 3, pp. 303-317, May 1998.
[22] C. Y. Lin, M. Wu, J. A. Bloom, I. J. Cox, M. L. Miller, and Y. M. Lui, “Rotation, scale, and translation-resilient public watermarking for images,” Proc. SPIE, Security and Watermarking of Multimedia Contents II, vol. 3971, pp. 90-98, Jan. 2000.
[23] D. Zheng, J. Zhao, and A. Saddik, “RST-invariant digital image watermark based on log-polar mapping and phase correlation,” IEEE Trans. Circuits Syst. Video Technol., vol. 13, no. 8, pp. 753-765, Aug. 2003.
[24] X. Kang, J. Huang, Y. Shi, and Y. Lin, “A DWT-DFT composite watermarking scheme robust to both affine transform and JPEG compression,” IEEE Trans. Circuits Syst. Video Technol., vol. 13, no. 8, pp. 776-786, Aug. 2003.
[25] S. Pereira and T. Pun, “Fast robust template matching for affine resistant image watermarking,” in Proc. 3rd International Workshop on Information Hiding, Sep. 1999, vol. 1768, Lecture Notes in Computer Science, pp. 199-210.
[26] S. Pereira and T. Pun, “Robust template matching for affine resistant image watermarks,” IEEE Trans. Image Process., vol. 9, no. 6, pp. 1123-1129, Jun. 2000.
[27] S. Pereira and T. Pun, “An iterative template matching algorithm using the Chirp-Z transform for digital image watermarking,” Pattern Recognition, vol. 33, pp. 173-175, 2000.
[28] F. Motallebi, H. Aghaeinia, “RST invariant wavelet-based image watermarking using template matching techniques,” Proc. 1st International Congress on Image and Signal Processing, vol. 5, pp. 720-724.
[29] M. Kutter, “Watermarking resisting to translation, rotation and scaling,” Proc. SPIE Multimedia Syst.Appl., vol. 3528, pp. 423-431, 1999.
[30] F. Deguillaume, S. Voloshynovskiy, and T. Pun, “A method for the estimation and recovering from general affine transforms in digital watermarking applications,” Proc. SPIE, Security and Watermarking of Multimedia Contents IV, vol. 4675, pp. 313-322, Jan. 2002.
[31] S. Voloshynovskiy, F. Deguillaume, and T. Pun, “Multi-bit digital watermarking robust against local non-linear geometrical distortions,” Proc. IEEE Int. Conf. Image Processing, vol. 3, pp. 999-1002, Oct. 2001.
[32] Po-Chyi Su and C.-C. Jay Kuo, “Synchronized Detection of the Block-based Watermark with Invisible Grid Embedding,” SPIE Photonics West, Security and Watermarking of Multimedia Contents III (EI27), San Jose, California, January 20-26, 2001.
[33] W. Bender , D. Gruhl , N. Morimoto, Aiguo Lu, “Techniques for data hiding,” IBM Systems Journal, v.35 n.3-4, p.313-336, 1996
[34] D. Delannay and B. Macq, “A method for hiding synchronization marks in scale and rotation resilient watermarking schemes,” Proc. SPIE, Security and Watermarking of Multimedia Contents IV, vol. 4675, pp. 548-554, Jan. 2002.
[35] A. Herrigel, S. Voloshynovsky, Y. Rytsar, “The watermark template attack,” Proc. SPIE, Security and Watermarking of Multimedia Contents III, vol. 4314, pp. 394-405, 2008.
[36] J. L. Dugelay, S. Roche, C. Rey, and G. Doerr, “Still-image watermarking robust to local geometric distortions,” IEEE Trans. Image Process., vol. 15, no. 9, pp. 2831-2842, Sep. 2006.
[37] M. Kutter, S. Bhattacharjee, and T. Ebrahimi, “Towards second generation watermarking schemes,” IEEE International Confernece on Image Process, vol. 1, 1999, pp. 320-323.
[38] P. Bas, J. Chassery, and B. Macq, “Geometrically invariant watermarking using feature points,” IEEE Transactions on Image Processing, vol. 11, no. 9, pp. 1014-1028, 2002.
[39] J. Seo and C.Yoo, “Image watermarking based on invariant regions of scale-space representation,” IEEE transactions on Signal Processing, vol. 54, no. 4, pp. 1537-1549, 2006.
[40] X. Gao, C. Deng, X. Li, and D. Tao, “Geometric Distortion Insensitive Image Watermarking in Affine Covariant Regions,” IEEE transactions on systems, man and cybernetics. Part C, Applications and reviews, vol. 40, no. 3, pp. 278-286, 2010.
[41] X. Wang, J. Wu, and P. Niu, “A new digital image watermarking algorithm resilient to desynchronization attacks,” IEEE Transactions on Information Forensics and Security, vol. 2, no. 4, pp. 655-663, 2007.
[42] D. Zheng, S. Wang, and J. Zhao, “RST invariant image watermarking algorithm with mathematical modeling and analysis of the watermarking processes,” IEEE Transactions on Image Processing, vol. 18, no. 5, pp. 1055-1068, 2009.
[43] D. Lowe, “Distinctive image features from scale-invariant keypoints,” International journal of computer vision, vol. 60, no. 2, pp. 91-110, 2004.
[44] A. B. Watson, “Perceptual optimization of DCT color quantization matrices,” in Proc. IEEE Int. Conf. Image Processing, Austin, TX, 1994.
[45] A. B. Watson, “DCT quantization matrices visually optimized for individual images,” in Proc. SPIE, vol. 1913, pp. 202–216, 1993.
[46] A. J. Ahumada Jr. and H. A. Peterson. “Luminance-model-based DCT quantization for color image compression,” in Human Vision, Visual Processing, and Digital Display III, B. E. Rogowitz, ed. Proceedings of the SPIE, 1992.
[47] Po-Chyi Su, Chin-Song Wu, Ing-Fan Chen, Ching-Yu Wu and Ying-Chang Wu, “A practical design of digital video watermarking in H.264/AVC for content authentication,” Signal Processing: Image Communication, vol. 26, Issues 8-9, pp. 413-426, Oct. 2011.
[48] Yaw-Hsuan Hwang, Po-Chyi Su, Yu-Chuan Chang and Ching-Yu Wu, “A geometrically resilient digital image watermarking scheme based on SIFT and extended template embedding,” The 24th IPPR Conference on Computer Vision, Graphics and Image Processing, Chia-Yi, Taiwan, Aug. 21-23, 2011.
[49] F. Petitcolas, M. Steinebach, F. Raynal, J. Dittmann, C. Fontaine, and N. Fates, “A public automated web-based evaluation service for watermarking schemes: StirMark benchmark,” SPIE proceedings series. Society of Photo-Optical Instrumentation Engineers, 2001, pp. 575-584.
[50] H. Bay, T. Tuytelaars, and L. Van Gool. “SURF: Speeded up robust features,” European Conference on Computer Vision, 1:404-417, 2006.
[51] Chao-Yung Hsu, Chun-Shien Lu and Soo-Chang Pei, “Security threat to media security applications based on scale-space feature extraction,” The 24th IPPR Conference on Computer Vision, Graphics and Image Processing, Chia-Yi, Taiwan, Aug. 21-23, 2011.
[52] Wang L, Ling H, Zou F, Zhengding L, “Real-Time Compressed- Domain Video Watermarking Resistance to Geometric Distortions,” IEEE Trans Multimedia 19(1):70–79,2012