跳到主要內容

簡易檢索 / 詳目顯示

研究生: 吳健富
Chien-Fu Wu
論文名稱: 地震引起之地變動及其衰減之估算
A study on the estimation of earthquake ground deformation and its attenuation
指導教授: 王乾盈
Chien-Ying Wang
葉永田
口試委員:
學位類別: 博士
Doctor
系所名稱: 地球科學學院 - 地球物理研究所
Graduate Institue of Geophysics
畢業學年度: 93
語文別: 中文
論文頁數: 214
中文關鍵詞: 1210成功地震同震地面位移台灣地區強地動觀測計劃有限單元法921集集地震
外文關鍵詞: 1210 Chengkung earthquake, Finite element method, TSMIP, Coseismic deformation, 921 Chi-Chi earthquake
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 論文提要:
    大地震發生時除了引起地表強烈振動外,從許多災害性地震的案例分析發現,地震所伴隨的地動變對於建築構造物也會帶來巨大的破壞力,因此有必要針對近斷層之地變動空間分布及其位移衰減趨勢進行分析研究,作為近震位移估算之參考依據。近年來近震資料由於測站密集佈設,資料量已逐漸增加,但仍不足夠作為分析樣本,本研究透過數值理論分析計算,產生理論位移資料來進行地變動特性分析,再以實際觀測資料進行比對及修飾,得到最佳之近震位移衰減公式。本研究提出由強震資料經由基線修正及二次積分處理標準化流程,可以得到測站所在地的同震位移紀錄及最大地表位移。標準化流程應用於儀器振動台測試紀錄,透過本文提出的方法,可以回復輸入位移量到97﹪;由實測地震資料處理及GPS觀測結果比較,兩者平均比值為1.05,大部分的資料落在0.78到1.41之間,數公分到數公尺的同震變形均能夠透過強震紀錄,經由標準化的基線修正得到,顯示本研究提出的標準化基線修正方法可以應用在同震變形資料的處理上。應用上述標準化處理流程,本文完成921集集地震及1210成功地震最大地表位移及同震變形的資料處理,得到之數值可作為位移衰減公式調整及修飾的參考。
    為計算理論位移,本研究以ABAQUS有限單元軟體,利用接觸元素概念,修改模型網格資料,增加一組虛擬節點用以模擬斷層錯動,計算之應力及位移結果與解析解及前人研究比對結果一致,可以將ABAQUS有限單元軟體延伸應用於斷層錯動模擬之研究工具。應用此一網格修正,對於具不同滑移量之斷層上下盤錯動所致之地變動模擬,經由921集集地震的實測資料,驗證以本文所提出之增加虛擬節點之ABAQUS有限單元法具有良好模擬的結果。利用增加虛擬節點之ABAQUS有限單元法,給予不同斷層參數,透過理論計算得到模擬之近震位移資料,分析各個斷層參數對於所引起之地變動空間分布及衰減趨勢影響權重,本文認為斷層長度為主要影響參數。本研究建立位移衰減通式為:log(Y)= C1 + C2 ×log(sqrt(A))–C3 ×log(R+sqrt(A))- C4 ×R,其中Y為觀測地動值或理論地動值,單位為公尺,A 為斷層破裂面積,單位為KmXKm ,R為測站至斷層的最短距離,單位為公里,C1 、C2 、C3 及C4 為欲迴歸的係數。依據理論計算所得之走向滑移斷層及傾角30度之逆衝斷層理論值,本研究回歸得到得到以下的位移衰減迴歸公式:
    (1)走向滑移斷層
    log(Y)= -1.393+ 2.216×log(sqrt(A))– 3.049×log(R+sqrt(A))-0.003×R
    (2)傾角30度之逆衝斷層
    上盤位移衰減公式
    log(Y)= -1.479+ 1.665×log(sqrt(A))–1.945×log(R+sqrt(A))-0.004×R
    下盤位移衰減公式
    log(Y)= -1.437+ 1.138×log(sqrt(A))–0.872×log(R+sqrt(A))-0.036×R
    上述三個衰減公式使用單位滑移量廻歸,只要加乘滑移量倍律,即可計算得到該滑移量之位移衰減估算值。


    A study on the estimation of earthquake ground deformation and its attenuation
    Chien-Fu Wu
    Abstract
    Strong ground shaking caused by a major earthquake may induce great damage. However, large fault rupture and ground deformation and failure may also have big destructive power to structures. In order to realize the effects of rupture process of shallow fault to the distribution of ground deformation, the following works were done in this study. (1) Modify the existing finite element program and design some appropriate shallow crustal structures to calculate the ground deformation induced by different fault ruptures with various geometry, source mechanism, and slip distribution. The computed ground deformation data were then used to analyze the attenuation relations of ground deformation with respective to source distance for different magnitude. (2) Integrate the acceleration data of the Chi Chi earthquake, collected by TSMIP (Taiwan Strong Motion Instrumental Program conducted by Taiwan Central Weather Bureau), to the corresponding displacement records and then some analyses are made to their peak values.
    Since 1990 digital strong-motion accelerographs and Globe Position System (GPS) instruments have been widely deployed in the Taiwan region (Shin et al., 2003; Yu et al., 2001). The 1999 Chi-Chi, Mw 7.6 earthquake and the 2003 Chengkung, Mw 6.8 earthquake were well recorded by both digital accelerographs and GPS instruments. These data offer a good opportunity to determine permanent displacements from the strong-motion records and to compare the results with those derived from the GPS measurements. As noted by Boore (2001), a double integration of the acceleration data often leads to ridiculous results, and baseline corrections are therefore required in most cases before the integration step. Based on the pioneering work of Iwan et al. (1985) and Boore (2001), this study developed an improved method for baseline correction and validated it using an extensive set of data from shaking table test of a known displacement on 249 accelerographs. Our baseline correction method recovered about 97% of the actual displacement from the shaking table data. We then applied this baseline correction method to compute permanent displacements from the strong-motion data of the Chi-Chi and Chengkung earthquakes. Our results agree favorably with the coseismic displacements determined by the GPS measurements at nearby sites. The ratio of seismic to geodetic displacement varies from 0.78 to 1.41, with an average ratio of about 1.05.
    Near field peak ground displacement(or permanent displacement) attenuation relationships are deduced with data from improvement finite element method. They are
    (1) strike slip fault
    log(Y)= -1.393+ 2.216×log(sqrt(A))–3.049×log(R+sqrt(A))-0.003×R
    (2) thrust fault (dip angle 30 degree)
    Hanging wall
    log(Y)= -1.479+ 1.665×log(sqrt(A))–1.945×log(R+sqrt(A))-0.004×R
    Foot wall
    log(Y)= -1.437+ 1.138×log(sqrt(A))–0.872×log(R+sqrt(A))-0.036×R
    Where Y is the amplitude of displacement in meter, A is fault rupture area in square kilometers, R is rupture distance in km.

    論文提要??????????????????????????????????????????????????????????????????????????????????????????????????????? i 英文摘要???????????????????????????????????????????????????????????????????????????????????????????????????????iii 致謝??????????????????????????????????????????????????????????????????????????????????????????????????????????????? v 目錄??????????????????????????????????????????????????????????????????????????????????????????????????????????????? vi 圖目???????????????????????????????????????????????????????????????????????????????????????????????????????????????viii 表目??????????????????????????????????????????????????????????????????????????????????????????????????????????????? xii 第一章 緒論?????????????????????????????????????????????????????????????????????????????????????????????????? 1 1.1 研究動機???????????????????????????????????????????????????????????????????????????????????????????????? 6 1.2 文獻回顧???????????????????????????????????????????????????????????????????????????????????????????????? 8 1.3 本文內容???????????????????????????????????????????????????????????????????????????????????????????????16 第二章 同震地面位移的觀測值???????????????????????????????????????????????????????????????? 18 2.1強震紀錄的資料偏移????????????????????????????????????????????????????????????????????????????19 2.2由強震紀錄估計地面位移的程序????????????????????????????????????????????????????????21 2.3 921集集地震及1210成功地震引起的同震地面位移???????????????????????46 2.3.1資料選取????????????????????????????????????????????????????????????????????????????????????????????47 2.3.2修正結果與GPS觀測資料?????????????????????????????????????????????????????????????????51 2.4本章小結?????????????????????????????????????????????????????????????????????????????????????????????????65 第三章 同震地面位移的理論模擬???????????????????????????????????????????????????????????? 68 3.1模擬方法????????????????????????????????????????????????????????????????????????????????????????????????69 3.2有限單元法數值測試????????????????????????????????????????????????????????????????????????????77 3.3理論模擬????????????????????????????????????????????????????????????????????????????????????????????????89 3.3.1 半無限空間之地變動模擬?????????????????????????????????????????????????????????????? 95 3.3.2 層狀地層之地變動模擬???????????????????????????????????????????????????????????????? 132 3.3.3 斷層不均勻滑移的影響???????????????????????????????????????????????????????????????? 136 第四章 地變動衰減模式?????????????????????????????????????????????????????????????????????????? 145 4.1衰減模式的推求??????????????????????????????????????????????????????????????????????????????????146 4.2 討論?????????????????????????????????????????????????????????????????????????????????????????????????????158 第五章 結論?????????????????????????????????????????????????????????????????????????????????????????????? 163 參考文獻???????????????????????????????????????????????????????????????????????????????????????????????????? 168 附錄1??????????????????????????????????????????????????????????????????????????????????????????????????????????175 附錄2??????????????????????????????????????????????????????????????????????????????????????????????????????????201 作者簡介???????????????????????????????????????????????????????????????????????????????????????????????????? 214

    Aki, K., 1972. Earthquake mechanism, Tectonophysics, 13, 423-446.
    Boore D. M., 1999. Effect of baseline correction on response spectra for two recordings of the 1999 Chi-Chi, Taiwan Earthquake. USGS, Open-File Rept. 99-547.
    Boore, D. M., 2001. Effect of baseline corrections on displacement and response spectra for several recodings of the 1999 Chi-Chi, Taiwan, Earthquake, Bull. Seism. Soc. Am. 91, 1199-1211.
    Campell K. W., 1997. Empirical near-source attenuation relationships for horizontal and vertical components of peak ground acceleration, peak ground velocity, and pseudo-absolute acceleration response spectra, Seismological Research Letters, V68, NO1., 154-179.
    Chinnery, M.A., 1961. The deformation of the ground around surface faults,Bull. Seism. Soc. Am. 51, 355-372.
    Chinnery, M.A., 1963. The stress changes that accompany strike-slip faulting,Bull. Seism. Soc. Am. 53, 921-932.
    Chiu, H. C., 1997. Stable Baseline Correction of Digital Strong-Motion Data, Bull. Seism. Soc. Am. 87, 932-944.
    Chen, H. Y., S. B. Yu, L. C. Kuo and C. C. Liu, 2005. Coseismic and postseismic displacement of the 10 December 2003 (Mw 6.5) Chengkung, eastern Taiwan, earthquake, submitted to Earth Planets Space.
    Chung, J. K. and T. C. Shin, 1999. Implication of the rupture process from the displacement distribution of strong ground motions recorded during the 21 September 1999 Chi-Chi, Taiwan earthquake, TAO : Terrestrial, Atmospheric and Oceanic Sciences 10, 777-786.
    Chung, J. K. and Y. T. Yeh, 1997. Shallow crustal structure from short-period Rayleigh-wave dispersion data in southwestern Taiwan, Bull. Seism. Soc. Am. 87, 370-382.
    Dziewonski, A. M. and D. L. Anderson, 1981. Preliminary reference earth model. Physics of the Earth and Planetary Interiors, 25. 297-356.
    Hanks,T. C. and H. Kanamori., 1979. A moment-magnitude scale, J. Geophys. Res. 84, 2483-2350.
    Huang, B. S. and Y. T. Yeh, 1992. Source geometry and slip distribution of the April 21, 1935 Hsinchu-Taichung, Taiwan earthquake, Tectonophysics, 210, 77-90.
    Huang, B. S. and Y. T. Yeh, 1997. The fault ruptures of the 1976 Tangshan Earthquake Sequence inferred from coseismic crustal deformation. Bull. Seism. Soc. Am. 87(4), 1046-1057.
    Hisada Yoshiaki and Bielak Jocobo, 2003. A theoretical method for computing near-field ground motion in layered half-space considering static offset due to surface faulting, with a physical interpretation of fling step and rupture directivity. Bull. Seism. Soc. Am. 93 , 1154-1168.
    Iwan, W. D., M. A. Moser, and C. Y. Peng, 1985. Some observations on strong-motion earthquake measurement using a digital accelerograph, Bull. Seism. Soc. Am. 75, 1225-1246.
    Jonathan D. B., 2001. Developing mitigation measures for the hazards associated with earthquake surface fault rupture. A workshop on Seismic Fault-induced Failures. 55-79.
    King, G. C. P., R. S. Stein, and J. Lin, 1994. Static stress changes and the triggering of earthquakes, Bull. Seism. Soc. Am. 84, 935-953.
    Kuochen, H., Y. M. Wu, Y. G. Chen, and R. Y. Chen, 2004. 2003 Mw6.8 Chengkung Earthquake and its Related Seismogenic Structures. Submitted to J. Asian Earth Sci.
    Lee, W. H. K., T. C. Shin, K. W. Kuo, K. C. Chen,and C. F. Wu, 2001. Data files from CWB free-field strong motion data from the 21 September Chi Chi, Taiwan, earthquake, Bull. seism. Soc. Am., 91, 1390.
    Lee, W. H. K., T. C. Shin, K. W. Kuo, K. C. Chen, and C. F. Wu, 2001, CWB free-field strong-motion data from the 21 September Chi-Chi, Taiwan, earthquake. Bull. Seism. Soc. Am., 91, 1370-1376.
    Liu, K. S., T. C. Shin and Y. B. Tsai, 1999. A free-filed strong motion network in Taiwan: TSMIP, TAO, Vol. 10, No.2, 31-50.
    Ma, K. F., J. Mori, S. J. Lee and S. B. Yu, 2001. Spatial and time distribution of slip for the 1999 Chi-Chi, Taiwan, earthquake. Bull. Seism. Soc. Am., 91, 1069-1087.
    Melsosh, H. J. and A. Raefsky, 1981. A simple and efficient method for introducing faults into finite element computations, Bull. Seism. Soc. Am. Vol. 71, 1391-1400.
    Okada, Y., 1985. Surface deformation due to shear and tensile faults in a half-space. Bull. Seismo. Soc. Am., 75,1135-1154.
    Okada, Y., 1992. Internal deformation due to shear and tensile faults in a half-space, Bull. Seismo. Soc. Am., 82, 1018-1040.
    Shakle, A. F., M. J. Huang and Graizer V. M., 2003. Strong-motion data processing. International handbook of earthquake and engineering seismology, Vol 81B, p967-981
    Smith, I. M., 1982. Programing the finite element method with application to geomechanics, John W. & Sons, New York.
    Wang, C. Y., and T. C. Shin, 1998. Illustrating 100 years of Taiwan seismicity. TAO, 9, 589-614.
    Wang, C. Y., C. H. Chang, and H. Y. Yen, 2000. An interpretation of the 1999 Chi-Chi earthquake in Taiwan based on the thin-skinned thrust model. TAO, 11, 609-623
    Wang W. H., S. H. Chang, and C. H. Chen., 2001. Fault Slip Inverted from Surface Displacements during the 1999 Chi-Chi, Taiwan, Earthquake. Bull. Seism. Soc. Am. 91, 1167-1181.
    Well, D. L. and K. J. Coppersmith., 1994. New empirical relationships among magnitude , rupture length, rupture width, rupture area, and surface displacement, Bull. Seism. Soc. Am. 84, 974-1002.
    Wu, Changjiang, Minoru Takeo and Staoshi Ide, 2001. Source process of the Chi-Chi earthquake: A join inversion of strong motion data and global position system data with a multifault model. Bull. Seism. Soc. Am. 91, 1128-1143.
    Wu Y. M., T. C. Shin and C. H. Chang, 2001. Near-real time mapping of peak ground acceleration and peak ground velocity following a strong earthquake. Bull. Seism. Soc. Am. 91, 1218-1228.
    Wu, Y. M., Y. G. Chen, J. C. Hu, T. C. Shin, C. H. Chang, H. Kuochen, C. F. Wu, C. S. Hou, and T. L. Teng, 2005. Coseismic vs. Intersiesmic Ground Deformations, Fault Rupture Inversion and Segmentation revealed by 2003 Mw 6.8 Chengkung Earthquake in Eastern Taiwan, submitted to Geophysical Research Letters.
    Wyss, M., 1979. Estimating maximum expectable magnitude of earthquakes from fault dimensions, Geology 7, 336-340.
    Yu, S. B., L. C. Kuo, Y. J. Hsu, H. H. Su, C. C. Liu, C. S. Hou, J. F. Lee, T. C. Lai, C. C. Liu, C. L. Liu, T. F. Tseng, C. S. Tsai. And T. C. Shin, 2001. Preseismic deformation and coseimic displacements associated with the 1999 Chi-Chi, Taiwan, earthquake. Bull. Seism. Soc. Am., 91, 995-1012.
    牛軍, 1990. 碩士論文,國立中央大學地球物理研究所。
    辛在勤, 1998. 台灣地區地震預警之初探. 氣象學報,No 2,Vol 42,118-134.
    林啟文、張徽正、盧詩丁、石同生、黃文正, 2000. 台灣活動斷層概論第二版,五十萬分之一台灣活動斷層分布圖說明書, 經濟部中央地質調查所特刊第十三號.
    黃柏壽, 1989. 以定元法模擬震源空間形貌與破裂過程, 博士論文, 國立中央大學地球物理研究所.
    黃柏壽、葉永田,1988. 地形對斷層錯動引致之地面變位的影響,中國地質學 會七十七度年會。台北。
    黃正耀, 1995. 台灣地區強地動特性及地震危害度參數評估,國立中央大學地球物理研究所碩士論文.
    劉坤松、吳健富和吳坤瑞, 1996. 台灣東北部地區地動加速度衰減模式之初步研究,臺灣地區強地動觀測計畫研討會(二),63-72.
    劉坤松, 1999. 台灣地區強震地動衰減模式之研究,國立中央大學地球物理研究所博士論文.
    張建興, 2004. 高密度地震資料分析及其用於台灣中部及東部孕震構造之研究
    國立中央大學地球物理研究所博士論文.
    葉永田,2001. 逆斷層錯動所導致之應力場變化,「地震及活斷層研究」重大科技計畫八十九年度期中成果研討會摘要集,154-156。
    葉永田、吳健富, 2004. 地震引起的永久變位之分布-理論與觀測,兩岸強地動觀測暨地震測報研討會論文集,20-28.
    鄭世楠、葉永田、徐明同、張建興、辛在勤, 1998. 台灣地區十大災害地震圖集的整理與製做,第7屆台灣地區地球物理研討會論文集,223-242.
    羅俊雄, 2001. 從九二一地震看國家地震工程的發展,中國土木水利工程學會九十年年會論文集,43-56.

    QR CODE
    :::