| 研究生: |
邱宣融 Hsuan-Jung Chiu |
|---|---|
| 論文名稱: |
使用波前檢測於折射率及色散之量測應用 Using Wavefront Sensor for The Application of Refractive Index and Dispersion |
| 指導教授: | 梁肇文 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 76 |
| 中文關鍵詞: | 波前檢測 、折射率 、色散 |
| 外文關鍵詞: | Wavefront sensor, Refractive index, Dispersion |
| 相關次數: | 點閱:18 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在光學檢測領域中,大致可以分為兩種檢測方式,一為干涉儀系統,量測光程差(optical path difference)並分析干涉條紋的變形量,即可解析待測樣品之資訊;另一為波前檢測技術,如Shack-Hartmann波前感測系統(Shack-Hartmann wavefront sensor),將微透鏡陣列置於CCD前方使光源聚焦於CCD,不同於干涉儀是量測光程差,波前感測系統是量測波前斜率(wavefront slope),從微透鏡之焦長與光點偏移量即可得到波前斜率,藉由波前斜率與波前之關係式,重建出待測樣品之波前,進而分析待測樣品之品質等資訊。
Shack-Hartmann波前感測系統應用於視光學、像差量測、適應性光學等領域,本論文將利用像差與位移之量測,同時分析待測樣品之品質與折射率,並使用三種可見光波長652.5 nm、517.0 nm與447.8 nm,量測出三種折射率數值,即可使用Buchdahl之色散公式,推算在656.3 nm、587.6 nm及486.1 nm的折射率,並得到阿貝數(Abbe number)。實驗的待測樣品會用CodeV軟體進行模擬,並與Shack-Hartmann波前感測系統量測得到之成像位移與像差進行比較。
在光學檢測領域中,大致可以分為兩種檢測方式,一為干涉儀系統,量測光程差(optical path difference)並分析干涉條紋的變形量,即可解析待測樣品之資訊;另一為波前檢測技術,如Shack-Hartmann波前感測系統(Shack-Hartmann wavefront sensor),將微透鏡陣列置於CCD前方使光源聚焦於CCD,不同於干涉儀是量測光程差,波前感測系統是量測波前斜率(wavefront slope),從微透鏡之焦長與光點偏移量即可得到波前斜率,藉由波前斜率與波前之關係式,重建出待測樣品之波前,進而分析待測樣品之品質等資訊。
Shack-Hartmann波前感測系統應用於視光學、像差量測、適應性光學等領域,本論文將利用像差與位移之量測,同時分析待測樣品之品質與折射率,並使用三種可見光波長652.5 nm、517.0 nm與447.8 nm,量測出三種折射率數值,即可使用Buchdahl之色散公式,推算在656.3 nm、587.6 nm及486.1 nm的折射率,並得到阿貝數(Abbe number)。實驗的待測樣品會用CodeV軟體進行模擬,並與Shack-Hartmann波前感測系統量測得到之成像位移與像差進行比較。
[1]P. Jain and J. Schwiegerling, ''RGB Shack–Hartmann wavefront
sensor,'' Journal of Modern Optics, vol. 55, p. 737-748, 2008.
[2]G. Y. Yoon, T. Jitsuno, M. Nakatsuka, and S. Nakai, ''Shack
Hartmann wave-front measurement with a large F-number plastic microlens array,'' Applied optics, vol. 35, p. 188-192, 1996.
[3]J. Ares, T. Mancebo, and S. Bara, ''Position and displacement
sensing with Shack-Hartmann wave-front sensors,'' Applied Optics, vol. 39, p. 1511-1520, 2000.
[4]V. Y. Zavalova and A. V. Kudryashov. ''Shack-Hartmann wavefront
sensor for laser beam analyses''. in International Symposium on Optical Science and Technology. 2002. SPIE.
[5]L. Seifert, H. J. Tiziani, and W. Osten, ''Wavefront reconstruction
with the adaptive Shack–Hartmann sensor,'' Optics Communications, vol. 245, p. 255-269, 2005.
[6]E. Abbe, ''Neue Apparate zur Bestimmung des Brechungs- und
Zerstreuungs-vermögens fester und flüssiger körper'', Mauke's Verlag, 1874.
[7]B. P. Chandra and S. C. Bhaiya, ''A simple, accurate alternative to
the minimum deviation method of determining the refractive index of liquids,'' American Journal of Physics, vol. 51, p. 160-161, 1983.
[8]S. Nemoto, ''Measurement of the refractive index of liquid using
laser beam displacement,'' Applied Optics, vol. 31, p. 6690-6694, 1992.
[9]J. C. Bhattacharya, ''Refractive index measurement,'' Optics & Laser
Technology, vol. 19, p. 29-32, 1987.
[10]W. Sellmeier, ''Theory of Anomalous Light Dispersion,'' Ann. Phys.
Chem, vol. 143, p. 271, 1871.
[11]H. A. Buchdahl, ''Optical aberration coefficients'', Dover
Publications, p. 151-152, 1968.
[12]P. N. Robb and R. I. Mercado, ''Calculation of refractive indices
using Buchdahl’s chromatic coordinate,'' Applied Optics, vol. 22, p. 1198-1215, 1983.
[13]V. N. Mahajan, ''Fundamentals of Geometrical Optics'', SPIE
PRESS, 2014.
[14]J. C. Wyant and K. Creath, ''Basic Wavefront Aberration Theory for
Optical Metrology'', in Applied Optics and Optical Engineering, p. 40-43, 1992.
[15]Z. Jiang, S. Gong, and Y. Dai, ''Monte-Carlo analysis of centroid
detected accuracy for wavefront sensor,'' Optics & Laser Technology, vol. 37, p. 541-546, 2005.
[16]W. H. Southwell, ''Wave-front estimation from wave-front slope
measurements,'' Journal of the Optical Society of America, vol. 70, p. 998-1006, 1980.