| 研究生: |
郭哲睿 Che-Jui Cuo |
|---|---|
| 論文名稱: |
深地層最終處置場緩衝材熱-水-力參數量測 及小型耦合試驗 |
| 指導教授: | 黃偉慶 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 127 |
| 中文關鍵詞: | MX-80膨潤土 、熱傳導係數 、水力傳導度 、土壤水分特性曲線 、近景攝影法 、數值模擬 |
| 外文關鍵詞: | MX-80 bentonite, thermal conductivity, hydraulic conductivity, Soil water characteristics curve, close range photogrammetry, numerical simulation |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
膨潤土被應用於當作緩衝材料,做為深地層處置場高放射性廢棄物之工程障壁。處置孔在安裝完處置罐及緩衝材後,地下水從母岩逐漸入侵緩衝材內並使其逐漸飽和。處置場緩衝材的再飽和行為同時受到地下水及熱衰變之熱(Thermal)-水(Hydraulic)-力(Mechanical)耦合影響。
為了瞭解緩衝材料在不同密度之熱-水-力之耦合行為,藉參數試驗來求得密度1,400 kg/m³、1,500 kg/m³及1,600 kg/m³之緩衝材料熱傳導係數、水力傳導係數及土壤水分特性曲線相關參數,並利用攝取水試驗、溫度場分佈試驗及數值模擬分析,驗證實際熱-水-力耦合行為與數值模擬結果是否一致。
試驗結果得知,熱傳導係數隨密度及溫度提升而增加,相同溫度下,乾密度試體1,600 kg/m³熱傳導係數高於乾密度1,400 kg/m³;相同密度下,60°C試體熱傳導係數高於25°C試體。膨潤土回脹壓力隨膨潤土乾密度提生而增加,飽和水力傳導度隨膨潤土乾密度提生而下降,非飽和水力傳導度Abaqus模式推估結果高於vG-Mualem模式。水汽平衡法之試體體積修正結果近景攝影法與封蠟法無明顯區別,由於溫度影響水與空氣之介面張力及毛細半徑,土壤水分特性曲線隨溫度提升而下降。比較數值模擬與溫度場分佈試驗,溫度場數值模擬高估實際溫度。比較攝取水試驗與水-力參數耦合結果,數值模型設定Abaqus模式之非飽和相對水力傳導度高估實際含水量分佈;套入vG-Mualem模式則低估實際含水量分佈。
bentonite is used to buffer material in an engineered barrier system for isolation of high-level radioactive wastes(HLW) in a repository. After emplacement of the buffer material, groundwater begins to be taken from the rock by the buffer. And the buffer becomes saturated gradually.
The resaturation of the buffer is considered a hydro-process occurring at elevated temperatures in the near-field of a repository. it is mainly affected by Thermal, Hydro and Mechanical factors, called T-H-M coupling effect.
In order to understand the thermal-hydraulic-mechanical coupling behavior of buffer materials at different dry densities. Through parameter test to obtain thermal conductivity, hydraulic conductivity and soil water characteristics curve with dry density 1,400 kg/m³, 1,500 kg/m³ and 1,600 kg/m³. And use water intake test, temperature distribution test and numerical simulation analysis to verify whether the actual thermal-hydraulic-mechanical coupling behavior is consistent with the numerical simulation results.
The test result shows that the thermal conductivity increases with the increase of density and temperature. At the same temperature, thermal conductivity of the dry density specimen 1,600 kg/m³ is higher than the dry density 1,400 kg/m³. At the same density, the thermal conductivity of the 60°C specimen is higher than that of the 25°C specimen. The swelling pressure of bentonite increases with the increase of dry density. Saturated hydraulic conductivity decreases with increasing dry density. Unsaturated hydraulic conductivity estimated by Abaqus model is higher than vG-Mualem model. There is no obvious difference between the close range photogrammetry and wax coating method in the volume correction result of the vapour equilibrium technique. Temperature affects the radius of the capillary tube and the pore radius of the air-water surface. Soil water characteristics curve decreases with increasing temperature. Comparing numerical simulation and temperature distribution test, the numerical simulation of temperature overestimates the actual temperature. Comparing the results of water intake test and hydraulic-mechanical parameter coupling. The numerical model sets the unsaturated relative hydraulic conductivity of the Abaqus model to overestimate the actual water content distribution.The numerical model sets the unsaturated relative hydraulic conductivity of the vG-Mualem model to underestimate the actual water content distribution
黃偉慶,(2014),「用過核子燃料深層地質處置場近場緩衝材料耦合效應研析」,行政院原子能委員會放射性物料管理局,委託計畫研究期末報告。
林柏聰,(2013),「國際高放射性廢棄物最終處置場址技術準則之研究」,行政院原子能委員會放射性物料管理局,委託計畫研究報告。
台灣電力公司,(2010),「用過核子燃料最終處置場」,台電力公司,2010修訂版。
王欣婷,(2003),「緩衝材料在深層處置場模擬近場環境下回脹行為基礎研究」,國立中央大學,碩士論文。
莊怡芳,(2008),「未飽和緩衝材料吸力與水力傳導度推求及再飽和行為」,國立中央大學,碩士論文。
蔡家恩,(2016),「用過核子燃料最終處置場緩衝材之熱-水-力耦合實驗及模擬」,國立中央大學,碩士論文。
陳憶婷,(2016),「低放射性廢棄物最終處置場回填材料長期穩定性分析」,國中央大學,碩士論文。
SKB, (1999), Coupled thermos-hydro-mechanical calculation of the water saturation phase of a KBS-3 deposition hole. Swedish Nuclear Fuel and Waste Management Company Limited, Stockholm, Sweden. (SKB TR-99-41).
SKB, (2010), Design, production and initial state of the buffer. Swedish Nuclear Fuel and Waste Management Company Limited, Stockholm, Sweden. (SKB TR-10-15).
SKB, (2006), Long-term safety for KBS-3 repositories at Forsmark and Laxemar – a first evaluation, Stockholm, Sweden. (SKB TR-06-09).
SKB, (2006), Consequences of loss or missing bentonite in a deposition hole. Swedish Nuclear Fuel and Waste Management Company Limited, Stockholm, Sweden. (SKB TR-06-13).
SKB, (2006), Mineralogy and sealing properties of various bentonites and smectite-rich clay materials, Stockholm, Sweden.(SKB TR-06-30).
SKB, (2006), Buffer and backfill process report for the safety assessment SR-Can, Stockholm, Sweden.(SKB TR-06-18).
Huang, W.H., and Chen, W.C., (2004), Swelling behavior of a buffer material under simulated near field environment, ournal of Nuclear Science and Technology, 41(12), 1271-1279.
Lee et al, (2010), Suction and water uptake in unsaturated compacted bentonite, Korea Atomic Energy Research Institute, Korea.
Wang et al, (2014), Numerical modeling of heating and hydration experiments on bentonite pellets, Engineering Geology, Germany.
Kazuhiro MATSUMOTO, Kazuki lijima, Kemji TANAI, (2006), Erosion Phenomenon of Bentonite Buffer Material, JAEA, Japan.
Tang et al, (2005), Controlling suction by vapour equilibrium technique at different temperatures, application to the determination of the water retention properties of MX80 clay, CERMES-ENPC, France.
M Th van Genuchten, F J Leij and S R Yates, (1991), The RETC Code for Quantifying the Hydraulic Functions of Unsaturated Soils, U.S.
ASTM, (2014), ASTM D5334-14 Standard Test Method for Determination of Thermal Conductivity of Soil and Soft Rock by Thermal Needle Probe Procedure, Annual Book of ASTM Standards.
Zhu, C.M., Ye, W.M., Chen, Y.G., Chen, B., and Cui, Y.J. (2013),.Influence of salt solutions on the swelling pressure and hydraulic conductivity of compacted GMZ01 bentonite. Engineering Geology, 166, 74-80.
Yunshan Xu, Dean Sun, Zhaotian Zeng, Haibo Lv, (2019), Temperature dependence of apparent thermal conductivity of compacted bentonites as buffer material for high-level radioactive waste repository, Applied Clay Science, China.
D.G. Fredlund, H. Rahardjo., (1993), Soil mechanics for unsaturated soils, John Wiley & Sons, Inc, New York.
Fredlund, D. G. and Xing, A. (1994), Equations for the woil-water characteristic curve, Candian Geotechnical Journal, Vol. 31, pp. 521-532.