| 研究生: |
程泓皓 Hung-Hao Cheng |
|---|---|
| 論文名稱: |
以PFC2D模擬併構岩單壓強度及變形性 |
| 指導教授: |
田永銘
Yong-Ming Tien |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 158 |
| 中文關鍵詞: | 併構岩 、體積比 、中央極限定理 |
| 外文關鍵詞: | Bimrock, volumetric fraction, Central Limit Theorem |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文以PFC2D(Particle Flow Code in 2 Dimension)模擬不同尺寸、不同體積比併構岩(Bimrock)在單壓試驗(Unconfined Compressive Test)下單壓強度、楊氏模數及柏松比等力學性質及變異性。研究顯示,單壓強度、楊氏模數、柏松比均隨體積比增加而增加。但在體積比20%以下,其增加幅度並不明顯,與純基質試體差異不大。當體積比超過20%以上,增加幅度才較為明顯。本文以微分力學模式驗證PFC2D的模擬結果,發現兩者相當吻合,說明了模擬之可行性。利用不同應變規長度量測所得之彈性係數平均值並無明顯差異,但其變異性隨長度增加而降低,並與體積比呈先升後降之趨勢。在不同尺寸下獲得之模擬結果亦有相同的趨勢。本文以中央極限定理進行回歸處理:「應變規長度、體積比與彈性係數變異性三者之關係」以及「尺寸、體積比與單壓強度、楊氏模數、柏松比變異性之關係」。在模擬過程中,觀察裂隙發展之情形,發現在尖峰強度前(單壓強度85%左右)才開始有少量的微裂隙生成,這些微裂隙發生在較為軟弱的基質或岩塊-基質介面間,且隨機分布在試體內;當過尖峰強度後,微裂隙才開始迅速延伸、發展成巨觀裂隙。本文經由統計各種變因之試體承受單壓下,三種鍵結(基質、岩塊及岩塊-基質鍵結)之斷裂數量於不同受力下所佔比例,以了解併構岩受單壓之破壞機制。
This paper uses PFC2D (Particle Flow Code in 2 Dimension) to simulate Bimrock to discuss volumetric fraction, sample sizes for uniaxial compression strength(UCS), Young's modulus(E), Poisson's ratio(ν) and theirs variability by Unconfined Compressive Test. Base on the numerical simulation results, the UCS, E, and ν increase with the increase of the volumetric fraction. However, in volumetric fraction for 20% or less, the UCS increase rate is not obvious. In this paper, we use differential scheme and Hashin and Shtrikman bounds to verify the simulation results and then find the good agreement. The means of Young’s modulus and Poisson’s ratio have no correlation with gauge length, but theirs coefficient of variation decrease with the gauge length, and first increased and then decreased with the volumetric fraction. The results of different sizes also have the same trend. The Central Limit Theorem has been used for statistical regression to find the relationship for "gauge length, volumetric fraction, and coefficient of variation for elastic modulus" and "sample sizes, volumetric fraction, and bimrock mechanical behavior".
During the simulation, the developing of the crack was observed that the models have a small amount of micro-cracks before peak state (about 85% of the uniaxial compressive strength). These micro-cracks randomly distributed in the relatively weak matrix or interface of blocks. After the peak state, the micro-cracks begin to extend rapidly and develop into macroscopic fractures. The article count the proportion of fracturing of three type bonds (matrix-matrix bonds, block-block bonds, and block-matrix bonds) by Unconfined Compressive Test, in order to understand bimrock’s failure mechanism under uniaxial compression.
1. 古智君,「巨觀等向性併構岩之製作及其力學行為」,碩士論文,國立中央大學土木工程學系,桃園 (2004)。
2. 李宏輝,「砂岩力學行為之微觀機制-以個別元素法探討」,博士論文,國立台灣大學土木研究所,臺北 (2008)。
3. 吳偉豪,「橫向等向性之製作與力學性質」,碩士論文,國立中央大學土木工程學系,桃園 (2006)。
4. 郭明傳,「複合岩體之岩塊體積比量測及其力學行為」,博士論文,國立中央大學土木研究所,中壢(2005)。
5. 張永奇,「由虛擬力學試驗探討併構崩積土之力學行為與性質-以梨山地滑區為例」,國立交通大學土木工程學系碩士班,新竹 (2008)。
6. 謝孟修,「崩積層之類併構岩材料力學行為與模式-以梨山地滑區為例」,國立交通大學土木工程學系碩士班,新竹 (2007)。
7. 蔡文傑,「巨觀等向性混成岩製作表面影像與力學性質」,碩士論文,國立中央大學土木工程學系,桃園 (2003)。
8. 蔣志宏,「分離元素法應用於土石流之行為」,碩士論文,朝陽科技大學營建工程研究所,台中 (2009)。
9. 劉文智,「以數值模擬層狀岩石巴西試驗」,碩士論文,國立中央大學土木工程學系,桃園 (2013)。
10. 盧育辰、田永銘、王仁正、鐘翊展、張灝薰、呂彥標、林晉祥,「二維量測併構岩岩塊體積比之不確定性」,2012岩盤工程研討會,苗栗 (2012)。
11. 羅文驤,「梨山崩積層中類併構岩(板岩夾黏土)之力學行為」,國立交通大學土木工程學系碩士班,新竹 (2007)。
12. 譚建國,「以微分模式研究複合材料之力學性質」,行政院國家科學委員會專題研究計畫成果報告,台南 (1980)。
13. ASTM, “Standard Practices for Preparing Rock Core as Cylindrical Test Specimens and Verifying Conformance to Dimensional and Shape Tolerances,” ASTM Standard D4543-08, ASTM International, West Conshohocken, PA(2008).
14. Brown, E.T., and Gonano, L.P., “Improved compression test technique for soft rock,” J. Geotech. Engng Div., ASCE 100, 196-9 (1974).
15. Bieniawski, Z.T., and Van Heerden, W.L., “The significance of in situ tests of large rock specimens,” Rock Mech., Vol. 12 (1975).
16. Barbero, M., Bonini, M., and Borri-Brunetto M., “Three-dimentional finite element simulations of compression tests on bimrock,” In The 12th International Conference of International Association for Computer Methods and Advances in Geomechanics, Goa, India (2008).
17. Coli, N., Berry, P., and Boldini, D., “In situ non-conventional shear tests for the mechanical characterisation of a bimrock,” International Journal of Rock Mechanics & Mining Sciences, Vol. 48, pp.95-102 (2011).
18. Coli, N., Berry, P., Boldini, D., and Bruno, R., “The contribution of geostatistics to the characterization of some bimrock properties,” Engineering Geology, Vol. 137-138, pp. 53-63 (2012).
19. Cundall, P.A., “A Computer Model for Simulating Progressive Large Scale Movements in Blocky Rock Systems,” in Proceedings of the International Society for Rock Mechanics, Vol. 1, No. II-8 (1971).
20. Cunha, A.P., "Scale effect in rock engineering-An overview of the Loen Workshop and other recent papers concerning scale effect," Proceedings of the 2nd International Workshop on Scale Effects in Rock Masses, Lisbon, Portugal, pp. 1-14 (1993).
21. Ding, X., and Zhang, L., “Effect of model scale on mechanical properties of rocks based on PFC3D,” American Rock Mechanics Association, No. 411 (2012).
22. Gharahbagh, A.E., and Fakhimi, A., “Numerical Determination of Represntative Volume Element of Rock,”2010 American Rock Mechanics Association, pp. 10-131 (2010).
23. Hoek, E., and Brown, E.T., Underground Excavations in Rock, London, Instn. Min. Metall. (1980).
24. Hashin, Z., and Shtrikman, S., ”On some variational principles in anisotropic and nonhomogeneous and elasticity,” Journal of the Mechanics and Physics of Solids, Vol. 10, pp.335-342 (1962).
25. ISRM, “Suggested methods for determining tensile strength of rock materials,” International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Vol. 15 No. 3, pp. 99-103 (1978).
26. Itasca Consulting Group Inc., PFC2D (Particle flow code in 2 dimensions), Version 4.0, Itasca Consulting Group Inc., Minneapolis , MN:ICG (2008).
27. Kahraman, S., and Alber, M., “Estimating unconfined compressive strength and elastic modulus of a fault breccias mixture of weak blocks and strong matrix,” International Journal of Rock Mechanics & Mining Science, Vol. 43, pp. 1277-1287 (2006).
28. Kahraman, S., and Alber, M., “Triaxial strength of a fault breccias of weak rocks in a strong matrix,” Bulletin of Engineering Geology and the Environment, Vol. 67, pp. 435-441 (2008).
29. Kahraman, S., and Alber, M., “Predicting the uniaxial compressive strength and elastic modulus of a fault breccias from texture coefficient,” Rock Mechanics and Rock Engineering, Vol 42, 117-127 (2009).
30. Koyama, T., and Jing, L., “Effects of model scale and particle size on micro-mechanical properties and failure processes of rocks-A particle mechanics approach,” Engineering Analysis with Boundary Elements, Vol. 31, pp.458-472 (2007).
31. Lindquist, E.S., “The strength and deformation properties of melange,” Ph.D. Dissertation, Department of Civil Engineering, University of California, Berkeley (1994).
32. McLaughlin, R., “A study of differential scheme for composite materials,” International Journal of Engineering Science, Vol. 15, pp.237-244 (1977).
33. Medley, E.W., “The engineering characterization of mélanges and similar block-in-matrix rocks (bimrocks),” Department of Civil Engineering, University of California, Berkeley (1994).
34. Medley, E.W., “Uncertainty in estimates of block volumetric proportions in mélange bimrocks,” In Proceedings International Symposium on Engineering Geology and the Environment, Athens, Greece (1997).
35. Masoumi, H., Douglas, K.J., Naydam, S., and Hagan, P., “Experimental study of size effects of rock on UCS and point load tests,” American Rock Mechanics Association, No. 215 (2012).
36. Pierce, M., Gaida, M., and DeGagne, D., “Estimation of rock block strength,” Proceedings of the .3rd CANUS Rock Mechanics Symposium, Toronto (2009).
37. Potyondy, D.O., and Cundall, P.A., “A bonded-particle model for rock,” International Journal of Rock Mechanics & Mining Sciences, Vol. 41, pp. 1329–1346 (2004).
38. Raymond, L.A., Yurkovich, S.P., and McKinney, M., “Block-in-matrix structures in the North Carolina Blue Ridge belt and their significance for the tectonic history of the southern Appalachian orogen,” Geological Society of America Special Papers, Vol. 228, pp. 195-216 (1989).
39. Sonmez, H., Gokceoglu, C., Tuncay, E., Medley, E.W., and Nefeslioglu, H.A., “Relationships between volumetric block proportions and overall UCS of a volcanic bimrock,” Felsbau-Rock and Soil Engineering, Vol. 5, pp. 27-34 (2004).
40. Sonmez, H., Gokceoglu, C., Medley, E.W., Tuncay, E., and Nefeslioglu, H.A., “Estimating the uniaxial compressive strength of a volcanic bimrock,” International Journal of Rock Mechanics and Mining Sciences, Vol. 43, pp. 554-561 (2006).
41. Sonmez, H., H. Altinsoy, C. Gokceoglu, and Medley, E.W., “Considerations in developing an empirical strength criterion for bimrock,” In 4th Asian Rock Mechanics Syposium, Singapore (2006).
42. Tien, Y. M., Lin, J.S., Kou, M.C., Lu, Y.C., Chung, Y.J., Wu, T.H., and Lee, D.H., “Uncertainty in Estimation of Volumetric Block Proportion of Bimrocks by Using Scanline Method,” American Rock Mechanics Association, No. 158 (2010).
43. Tien, Y.M., Lu, Y.C., Wu, T.H., Lin, J.S., and Lee, D.H., “Quantify uncertainty in scanline estimates of volumetric fraction of anisotropic bimrocks,” American Rock Mechanics Association, No. 345 (2011).
44. Tien, Y.M., Lu, Y.C., Chang, H.H., Chung, Y.C., Lin, J.-S., and Lee, D.H., “Uncertainty of Volumetric Fraction Estimates Using 2-D Measurements,” American Rock Mechanics Association, No.492 (2012).
45. Yoshinaka, R., Osada, M., Park, H., Sasaki, T. & Sasaki, K., “Practical determination of mechanical design parameters of intact rock considering scale effect,” Engineering Geology, Vol. 96, pp. 173-186 (2008).
46. Zhang, Q., Zhu, H., Zhang, L., and Ding, X., “Study of scale effect on intact rock strength using particle flow modeling,” International Journal of Rock Mechanics & Mining Sciences, Vol. 48, pp. 1320-1328 (2011).