| 研究生: |
簡潔 Chieh Chien |
|---|---|
| 論文名稱: |
600-V 溝渠式絕緣閘雙極性電晶體設計、分析與短路能力探討 |
| 指導教授: |
辛裕明
Yue-ming Hsin |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 98 |
| 中文關鍵詞: | 絕緣閘雙極性電晶體 、短路能力 、邊緣終端區 、IGBT反相驅動電路 |
| 外文關鍵詞: | Insulated Gate Bipolar Transistor, Short-circuit capability, Termination, IGBT Inverter Board |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文首先針對封裝完成之額定電壓/電流為600 V/30 A與導通電壓為1.88 V之絕緣閘雙極性電晶體IGBT:Insulated Gate Bipolar Transistor進行設計、製作流程模擬與測量結果分析,再針對縮小元件面積改善邊緣終端區(edge termination)之設計進行研究。最佳化邊緣終端區設計寬度為200 μm且崩潰電壓可達到1200 V以上,藉由改變保護環(guard ring)之濃度可將崩潰電壓調整至額定電壓600 V以配合主動區(active area)之設計。
利用Silvaco公司之Athena和Atlas軟體進行元件製程模擬和電性分析後,加上電路架構進一步探討IGBT短路操作能力(short-circuit capability)。論文中提出場終止型(Field-stop) IGBT之N-緩衝層以遞減摻雜劑量方式作背部摻雜,可有效改善元件短路能力且對元件之基本特性影響不大。最後針對IGBT在變頻器電路(inverter)應用,將隔離電路、閘極驅動電路和六顆IGBT設計在變頻器驅動板中來驅動壓縮機馬達,並配合最佳控制策略完成直流變頻冷氣驅動系統。本論文詳細介紹系統中反相驅動板之設計與操作方法,並將封裝後之IGBT放入此板中做測試。
This research demonstrated the design, analysis, simulation, and characterization of a packaged IGBT (Insulated Gate Bipolar Transistor) with the rated voltage/current of 600 V/30 A and on-state voltage of 1.88 V. Moreover, the edge termination was designed to minimize the chip size. The minimum size of designed termination is 200 μm and the measured breakdown voltage is up to 1250 V. For 600 V application the active area of the edge termination can be achieved by changing the guard ring implantation dosage.
Silvaco TCAD simulators (Athena and Atlas) are used to design and simulate the IGBT process and electrical characteristics. After that IGBT is coupled with the circuit architecture to investigate the short-circuit capability. This thesis proposed the field-stop IGBT by decreasing N-buffer dosage gradually from backside implantation, which can significantly improve the device short-circuit capability without acutely affecting the dc characteristics. Finally, an IGBT inverter board including the isolation circuit, gate drive circuit and six packaged IGBTs is demonstrate to evaluate the packaged IGBTs The IGBT inverter board is designed to drive the compressor and combine with the optimized control strategy for DC inverter air conditioner drive system.
[1] C.-K. Liu, Y.-L. Chao, J.-C. Chang, W. Li, C.-M. Tzeng, R.-C. Fang, K.-S. Kao, T.-C. Chang, C.-S. Chen, W.-C. Lo, “IGBT power module packaging for EV applications,” Int. Conf. Electron. Mater. Packag., pp. 1-4, Dec. 2012.
[2] B.-Y. Ku and J.-S. Liu, “Converter-switching surges: railroad vehicle power converter impact studies,” IEEE Veh. Technol. Mag., pp. 57-66, Sept. 2012.
[3] S.-Y. Tseng, S. Peng, Y. Chuang, C. Tsai, “Multi-switch driving circuit with LLC resonant circuit for high pulsed-voltage generator,” IEEE 9th Int. Conf. Power Electron. Drive Syst., pp. 803-808, Dec. 2011.
[4] K.-W. Chu, W.-S. Lee; C.-Y. Cheng; C.-F. Huang ; F. Zhao; L.-S. Lee; Y.-S. Chen; C.-Y. Lee; M.-J. Tsai, “Demonstration of Lateral IGBTs in 4H-SiC,” IEEE Electron Device Lett., pp. 286-288, Feb. 2013.
[5] R. Y. Su, C. C. Cheng, K. H. Huo, F. J. Yang, J. L. Tsai, R. S. Liou, H. C. Tuan, “Design of 700 V LIGBT with the suppressed substrate current in a 0.5 μm junction isolated technology,” in Proc. IEEE Int. Symp. Power Semicond. Devices ICs, pp. 221-224, Jun. 2012.
[6] B. J. Baliga, M. S. Adler, P. V. Gray, R. P. Love and N. Zommer, “The insulated gate rectifier (IGR): a new power switching device,” in Proc. IEEE Int. Electron Devices Meeting, pp. 264-267, 1982.
[7] K. S. Oh, “Application Note 9016: IGBT Basic 1,” Fairchild Semiconductor, Feb. 2001.
[8] B. J. Baliga, Fundamentals of Power Semiconductor Devices. Springer, pp. 816-819, 2008.
[9] H. R. Chang, B. J. Baliga., J. W. Kretchmer and P. A. Piacente, “Insulated gate bipolar transistor (IGBT) with a trench gate structure,” IEEE Int. Electron Devices Meeting, pp. 674-677, 1987.
[10] E. R. Motto, J. F. Donlon, H. Takahashi, M. Tabata and H. Iwamoto, “Characteristics of a 1200 V PT IGBT with trench gate and local life time control,” Ind. Appl. Conf., pp. 811-816, Oct. 1998.
[11] H. Ruething, F. Umbach, O. Hellmund, P. Kanschat and G. Schmidt, “600V-IGBT3: trench field stop technology in 70 μm ultra thin wafer technology,” in Proc. IEEE Int. Symp. Power Semicond. Devices ICs, pp. 211-214, Jun. 2004.
[12] 林毓誠, “600 V新型溝渠式載子儲存絕緣閘雙極性電晶體之設計,” 國立中央大學電機工程學系碩士論文, 2011
[13] M. Kitagawa, I. Omura, S. Hasegawa, T. Inoue and A. Nakagawa, “A 4500V injection enhanced insulated gate bipolar transistor (IEGT) in a mode similar to a thyristor,” IEEE Int. Electron Devices Meeting, pp. 679-682, Dec. 1993.
[14] H. Takahashi, E. Haruguchi, H. Hagino and T. Yamada, “Carrier stored trench-gate bipolar transistor (CSTBT)-A novel power device for high voltage application,” in Proc. IEEE Int. Symp. Power Semicond. Devices ICs, pp. 349-352, May 1996.
[15] W. C.-W. Hsu, F. Udrea, H.-T. Chen and W.-C. Lin, “A novel double-gate Trench Insulated Gate Bipolar transistor with ultra-low on-state voltage,” in Proc. IEEE Int. Symp. Power Semicond. Devices ICs, pp. 291-294 , Jun. 2009.
[16] B. J. Baliga, Fundamentals of Power Semiconductor Devices. Springer, pp. 120-134, 2008.
[17] C. Ronsisvalle and V. Enea, “Improvement of high-voltage junction termination extension (JTE) by an optimized profile of lateral doping (VLD),” Microelectron. Reliab., pp. 1773-1777, Aug. 2010.
[18] Infineon Application Notes, “Short Circuit Behaviour of IGBT³ 600 V,” Infineon Technol., 2005.
[19] M. Otsuki, Y. Onozawa, H. Kanemaru, Y. Seki and T. Matsumoto, “A study on the short-circuit capability of field-stop IGBTs,” IEEE Trans. on Electron Devices, pp.1525-1531, Jun. 2003.
[20] T. Wikstrom, F. Bauer, S. Linder and W. Fichtner, “Experimental study on plasma engineering in 6500V IGBTs,” in Proc. IEEE Int. Symp. Power Semicond. Devices ICs, pp. 37-40, May 2000.
[21] J. Yamashita, A. Uenishi, Y. Tomomatsu, H. Haraguchi, H. Takahashi, I. Takata, and H. Hagino, “A study on the short-circuit destruction of IGBTs,” in Proc. IEEE Int. Symp. Power Semicond. Devices ICs, pp. 35-40, May 1993.
[22] J. Yamashita, E. Haruguchi and H. Hagino, “A study on the IGBT turn-off failure and inhomogeneous operation,” in Proc. IEEE Int. Symp. Power Semicond. Devices ICs, pp. 45-50, Jun. 1994.
[23] B. J. Baliga, Fundamentals of Power Semiconductor Devices. Springer, pp. 1005-1006, 2008.