跳到主要內容

簡易檢索 / 詳目顯示

研究生: 蔡銘璟
Min-Ching Tsai
論文名稱: 樹圖最大特徵值的討論
On the spectral radius of trees
指導教授: 黃華民
Hua-Min Huang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
畢業學年度: 97
語文別: 英文
論文頁數: 36
中文關鍵詞: 樹圖特徵值譜值
外文關鍵詞: Bethe tree, balanced rooted tree, spectrum, spectral radius
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們討論根樹圖的譜值,並得到一些分類的結果


    We discuss the spectrum of balanced rooted tree

    Chapter 0 Historical review and overview of the thesis 1 0.1 Historical review.............................1 0.2 Overview of the thesis........................2 Chapter 1 Preliminaries 3 1.1 Basic definitions on graph theory.............3 1.2 Preliminaries on the eigenvalue problem.......5 Chapter 2 Computation of the graph spectrum 8 2.1 Equitable partitions..........................8 2.2 Graphs with recursive structure..............11 2.3 Graph defined by some algebraic identity.....12 2.4 Eigenvector can be regarded as a harmonic function.....................................13 Chapter 3 Main results 15 3.1 Bethe tree B(k, n) and balanced rooted trees R(k_1,...,k_n)...............................15 3.2 Spectrum of R(k_1,...,k_n)...................16 3.3 The spectral radius of the long leg spider Sp(k, n).....................................25 3.4 The spectral radius of the subgraphs of R(k,1)...............................27 Chapter 4 Possible Future Works 29 References 30

    [1] T. H. Wei, The algebraic foundations of ranking theory. Thesis, Cambridge (1952).
    [2] L. M. Lhxtehbaym, Characteristic values and a simple graph., Matem. Sezda, Journals, Vol.: 1 (1956) 135-136.
    [3] L. Collatz, Spektren endlicher Grafen, Abh. Math. Sem. Univ. Hamburg 21(1957)
    63–77.
    [4] R.A. Brualdi, A.J. HoIman, On the spectral radius of a (0;1) matrix, Linear Algebra
    Appl. 65 (1985) 133-146.
    [5] R.P. Stanley, A bound on the spectral radius of graphs with e edges, Linear Algebra
    Appl. 67 (1987) 267–269.
    [6] Y. Hong, Upper bounds of the spectral radius of graphs in terms of genus, J. Combin.
    Theory Ser. B 74 (1998) 153–159.
    [7] A. Berman, X. D. Zhang, On the spectral radius of graphs with cut vertices, J. Combin.
    Theory Ser. B 83 (2001) 233–240.
    [8] Y. Hong, J. L. Shu, K. Fang, A sharp upper bound of the spectral radius of graphs, J.
    Combin. Theory Ser. B 81 (2001) 177-183.
    [9] J.L. Shu, Y. Wu, Sharp upper bounds on the spectral radius of graphs, Linear Algebra Appl. 377 (2004) 241–248.
    [10] D. Cao, Bounds of eigenvalues and chramatic numbers, Linear Algebra Appl. 270 (1998) 1–13.
    [11] K.Ch. Das, P. Kumar, Some new bounds on the spectral radius of graphs, Discrete Math. 281 (2004) 149–161.
    [12] L. Collatz, U. Sinogowitz, Spektren Endlicher Grafen, Abh. Math. Sem. Univ. Hamburg 21 (1957) 63-77.
    [13] R. A. Horn and C. R. Johnson, Matrix analysis, Cambridge, preprint.
    [14] Norman Biggs, Algebraic graph theory, Cambridge, Second Edition 1993.
    [15] Douglas B. West, Introduction to Graph Theory, Prentice Hall, Second Edition 2001
    [16] T.C. Hu, Combinatorial Algorithms , Addison-Wesley, 1982.
    [17] J. M. Aldous and R. J. Wilson, Graphs and applications, Springer, 2001.
    [18] I. N. Herstein and D. J. Winter, A primer on liner algebra, Macmillan, 1990.
    [19] Dragos M. Cvetkovic, Spectra of graphs, Academic, 1980.
    [20] Li-Cheng Hsu, On the Spectrum of Trees, Thesis of master, 2009.
    [21] Ya-Jung Tseng, Constructing Strongly Regular Graphs from
    D-bounded Distance-Regular Graphs, Thesis of master, 2008.

    QR CODE
    :::