跳到主要內容

簡易檢索 / 詳目顯示

研究生: 李佳燁
Chia-yeh Li
論文名稱: 可共享資源的非循環網路系統建構在測量基礎上之控制策略
A Measurement Based Control Policy for Acyclic Networkswith Shared Resources
指導教授: 洪英超
Ying-Chao Hung
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 統計研究所
Graduate Institute of Statistics
畢業學年度: 97
語文別: 中文
論文頁數: 36
中文關鍵詞: 可資源共享非循環延時控制策略
外文關鍵詞: control policy, shared resources, acyclic, delay
相關次數: 點閱:20下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來排隊理論廣泛被應用於通訊、計算、網路等領域。由於科技日新月異,許多的網路系統已具有「可資源共享」的特性。此特性使得系統更加複雜化,這也使系統的各種表現值(performance)不易分析。本文考慮一可資源共享的非循環(acyclic)網路系統並針對系統延時(delay)之最佳化提出一動態控制策略。此策略以連續層級的流體控制(fluid control)問題描述系統延時之最佳化資源配置(allocation)問題,由於此最佳化問題需仰賴該時間點的工作輸入流量強度(traffic intensity)以解出最佳資源配置,故衍生出工作輸入流量強度估計問題。而本文採指數加權移動平均來估計此流量強度,並引入多變量指數加權移動平均控制圖進行流量強度變動的偵測,以解決速率變動頻繁導致最佳化的計算與伺服器配置切換之成本(cost)問題。而文末分別以獨立的卜瓦松輸入過程與相關的再生(renewal)輸入過程進行模擬以探討延時等表現值,並由模擬結果驗證此策略在這些輸入過程中的某些情況下可在大幅降低伺服器重新配置次數的同時維持一定水平之平均等待時間。


    In this paper we consider a general model framework for acyclic stochastic processing networks with shared resources.Motivated by a fluid control problem of the model,we propose a measurement based control policy that improves QoS performance with respect to delay metrics.The policy employs statistical techniques involving estimation and shift-monitoring of traffic intensities so that it is responsive to traffic fluctuations and minimizes the number of switchings between service configurations.The performance of the policy is illustrated on a number of queueing systems with different types of input traffic.

    第一章 緒論 ••••••••••••••••••••• 1 第二章 一般化的可資源共享的非循環網路系統 •••••• 4 2-1 網路系統的描述與假設 ••••••••••• 4 2-2 系統動態 ••••••••••••••••• 6 2-3 系統的穩定性與穩定區域 •••••••••• 9 2-4 最大流量控制策略 ••••••••••••• 10 第三章 延時(delay)最佳化問題••••••••••••• 12 3-1 最佳流體控制問題 ••••••••••••• 12 3-2 工作輸入強度的估計 •••••••••••• 15 3-3 使用MEWMA控制圖進行強度監控•••••••• 17 第四章 表現值的評估 ••••••••••••••••• 22 4-1 卜瓦松輸入過程的系統模擬 ••••••••• 22 4-2 再生輸入過程的系統模擬 •••••••••• 23 第五章 結論 ••••••••••••••••••••• 26 參考文獻••••••••••••••••••••••• 27

    [1] B. Simon and R.D. Foley(1979). Some results on sojourn times in acyclic Jackson networks. Management Science, 27, pp. 1027–1034.
    [2] B. W. Silverman(1986). Density Estimation for Statistics and Data Analysis. Monographs on Statistics and Applied Probability. Chapman & Hall.
    [3] C.A. Lowry and W.H. Woodall(1992). A Multivariate Exponentially Weighted Moving Average Control Chart. Technometrics, 34(1), pp. 46-53.
    [4] D. Bertsimas, D. Gamarnik, and J. Tsitsiklis(1996). Stability conditions for multiclass fluid queueing networks. IEEE Trans. Automat. Control, 41,pp.1618–1631.
    [5] J. F. MacGregor and T. J. Harris(1993). The Exponentialy Weighted Moving Variance. J. Qual. Technol. 25, pp. 106.
    [6] J. G. Dai(1995). On the positive Harris recurrence for multiclass queueing networks: a unified approach via fluid models. Ann. Appl. Probab. 5, pp 49-77.
    [7] J. G. Dai(1999). Stability of fluid and stochastic processing networks. MaPhySto Miscellanea Miscellanea Publication, 9, Denmark.
    [8] J. Warland and P. Varaita(1980). Sojourn times and the overtaking condition in Jacksonian networks. Advances in Application Probability, 12, pp. 1000–1018.
    [9] M. Armony and N. Bambos(2003). Queueing Dynamics and Maximal Throughput Scheduling in Switched Processing Systems. Queueing System : Theory and Applicactions, 44(3), pp. 209–252.
    [10]M. C. Jones(1993). Simple boundary correction for kernel density estimation. Statistics and Computing, Volume 3, pp. 135–146.
    [11]R. Bar-Yehuda, O. Goldreich and A. Itai(1993). Multiple Communication in Multi-Hop Radio Networks. SIAM J. on Computing, 22, pp. 875–887.
    [12]S. L. Bell and R. J. Williams(2001). Dynamic scheduling of a system with two parallel servers in heavy traffic with resource pooling : Asymptotic optimality of a threshold policy. Ann. Appl. Probab. 25, pp.176–202.
    [13]Y.C.Hung and G.Michaildis(2009). Stability and Control of Acyclic Stochastic Processing Networks with Shared Resources. Preprint.

    QR CODE
    :::