| 研究生: |
李光君 Kuang-Chun Lee |
|---|---|
| 論文名稱: |
壓電耦合吸振器應用於旋轉樑之減振 Reducing Vibration of A Rotating Beam By Using The Coupled Piezoelectric Dynamic Absorbers |
| 指導教授: |
黃以玫
Yii-Mei Huang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 156 |
| 中文關鍵詞: | 格勒金 、旋轉樑 、漢米爾頓 、吸振器 |
| 外文關鍵詞: | Galerkin''s method, Hamilton''s principle, absorber |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文的主要目的為探討壓電耦合吸振器應用於旋轉雷立夫樑(Rayleigh’s beam)的減振效應。本文系統考慮兩端為簡支撐的旋轉雷立夫樑,樑上受到一簡諧外力激振,並假設外力頻率與樑轉動頻率相等。文中將壓電材料貼附於旋轉雷立夫樑表面上,並配合適當的電子元件如電感、電阻與電容,以及由一耦合之電子元件將兩個別不同之吸振電路結合,形成一對於系統具減振效果的壓電耦合吸振器裝置,因此當旋轉雷立夫樑受外力激振產生振動時,則即可用壓電耦合吸振器來抑制系統過大的振動量。
本文根據漢米爾頓定理(Hamilton’s principle)推導出旋轉雷立夫樑貼上壓電材料的系統運動方程式,並配合壓電吸振器的電路方程式形成一偏微分方程組,再利用格勒金法(Galerkin’s method)將系統運動方程式離散化,求出系統的位移解,並由數值結果加以分析討論,進而得知壓電耦合吸振器對系統減振特性。
傳統式壓電吸振器可作為減振之用,但其吸振頻率必須精準的相等於系統之共振頻率,在調整阻尼比後才可以達到減振的效果,於是為改善其缺點發展電阻耦合式壓電吸振器,但此類吸振頻率必須精準的對稱於系統之共振頻率,在增加阻尼比後才能達到減振的效果,故再經由改良後進而得到電感耦合式壓電吸振器,此形式之壓電吸振器只需調整吸振頻率與電感值達一適當小之值,增加阻尼比後即可對系統各共振頻率達到相當的減振的效果,其吸振效果優於傳統式壓電吸振器與電阻耦合式壓電吸振器,且不需精準的相等或者對稱於系統之共振頻率,在三類吸振器中最為實用。
The purpose of this thesis is to reduce the vibration of a rotating beam by using the coupled piezoelectric dynamic absorbers. A rotating Rayleigh beam with simply supported ends subject to an external harmonic force is considered. Piezoelectric coupling absorbers are attached to the surface of the beam. The frequency of the external harmonic force is chosen equal to the rotating frequency of the beam. Each absorber is made of two pieces of piezoelectric material connected to passive electric components. Two absorbers are further coupled via a resistor or an inductor.
The equations of motion of the composite rotating beam are derived by Hamilton’s principle and decretized by Galerkin’s method. The dynamic responses of the beam subjected to the harmonic force are solved. Various designs of coupled piezoelectric absorbers are discussed in this thesis. The numerical results show that the coupled absorbers are effective for reducing the vibration of the rotating beam.
吳朗, 1994, ”電子陶瓷-壓電”, 全新科技出版社, 台北市.
曹淵閔, 2006, 動態吸振器在工程上的應用探討, 國立台灣科技大學機械工程研究所碩士論文, 台北市.
蕭詩旋, 2005, 運用壓電吸振器於旋轉雷力夫樑上之減振設計, 國立中央大學機械工程研究所碩士論文, 桃園縣.
Bauer, H. F., 1980, “Vibration of a Rotating Uniform Beam, Part I: Orientation in the Axis of Rotation”, Journal of Sound and Vibration, Vol. 72, pp. 177-189.
Burdisso, R. A. And Heilmann, J. D., 1998, “A New Dual-Reaction Mass Dynamic Vibration Absorber Actuator For Active Vibration Control”, Journal of sound and vibration, Vol. 214, pp. 817-831
Cheng, C. C. and Lin, J. K., 2003, “Modeling a Rotating Shaft Subjected to a High-speed moving force”, Journal of Sound and Vibration, Vol. 261, pp. 955-965.
Dimitriadis, E. K., Fuller, C. R. and Rogers, C. A., 1991, “Piezoelectric Actuators for Distributed Vibration Excitation of Thin Plate”, Journal of Vibration and Acoustics, Vol. 113, pp. 100-107.
Hagood, N. W. and von Flotow, A., 1991, “Damping of Structural Vibrations with Piezoelectric Materials and Passive Electrical Networks”, Journal of Sound and Vibration, Vol. 146, pp. 243-268.
Huang, Y. M. and Lee, C. Y., 1998, “Dynamics of a Rotating Rayleigh Beam Subject to a Repetitive Traveling Force”, Inter-national Journal of Mechanical Sciences, Vol. 40, pp. 779-792.
Hollkamp, J. J., 1994, “Multimodal Passive Vibration Suppression with Piezoelectric Materials and Resonant Shunts”, Journal of Intelligent Material Systems and Structures, Vol. 5, pp. 49-57.
Katz, R., Lee, C. W., Ulsoy, A. G. and Scott, R. A., 1988, “The Dynamic Response of a Rotating Shaft Subject to a Moving Load”, Journal of Sound and Vibration, Vol. 122, pp. 131-148.
Kurnik, W., Przybylowicz, P. M., 2003, “Active Stabilisation of A Piezoelectric Fiber Composite Shaft Subject to Follower Load”, International Journal of Solids and Structures, Vol. 40, pp. 5063-5079.
Lee, C. W., Katz, R., Ulsoy, A. G., and Scott, R. A., 1988, “Modal Analysis of a Distributed Parameter Rotating Shaft”, Journal of Sound and Vibration, Vol. 122, pp. 119-130.
Nelson, H. D., 1998, “Rotordynamic Modeling and Analysis Procedures: A Review”, JSME International Journal Series C-Mechanical Systems Machine Elements And Manufacturing, Vol. 41, pp. 1-12.
Park, C. H., 2003, “Dynamics Modeling of Beams with Shunted Piezoelectric Elements”, Journal of Sound and Vibration, Vol. 268, pp. 115-129.
Song, O., Librescu, L. and Jeong, N-H., 2002, “Vibration and Stability Control of Smart Composite Rotating Shaft via Structural Tailoring and Piezoelectric Strain Actuation”, Journal of sound and vibration, Vol. 257, pp. 503-525.
Tiersten, H. F., 1969, Linear Piezoelectric Plate Vibrations, Plenum, New York.
Tondl, A., 1965, Some Problems of Rotor Dynamics, Chapman Hall Limited, London.
Wang, K. W., Yu, W. K., and Lai, J. S., 1994, “Adaptive-Passive Control of Structural Vibrations Via Piezoelectric Materials with Real-Time Adaptable Circuits”, Proceedings of Noise-Con 94, pp. 455-460.
Yang, J. S. and Fang, H. Y., 2003, “A New Ceramic Tube Piezo-electric Gyroscope”, Sensors and Actuators, Vol. 107, pp. 42-49.