| 研究生: |
王筱雯 Xiao-wen Wang |
|---|---|
| 論文名稱: |
尋找MyoD啟動子上Wnt3a訊號路徑的目標區域並探討FoxO1在肌肉分化過程中所扮演的角色 Identifying the Wnt3a signaling pathway targeted regions in MyoD promoter and the role of FoxO1 in Myogenesis. |
| 指導教授: |
陳盛良
Shen-Liang Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生醫理工學院 - 生命科學系 Department of Life Science |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | MyoD啟動子 、Wnt3a訊號路徑 、FoxO1 |
| 外文關鍵詞: | FoxO1, Wnt3a signaling pathway, MyoD promoter |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在骨骼肌發育過程中,MyoD是決定肌肉品系形成的重要轉錄因子。MyoD只會表現在骨骼肌肉細胞以及肌肉前驅細胞中。它屬於myogenic basic helix-loop-helix transcription factors (MRFs)家族的一員,此家族是由體節鄰近的組織,像是神經索及神經管所分泌的訊號分子所誘導表現的。Wnt訊號分子即是其中的一個誘導分子,可以在肌纖維母細胞發現它。Wnt家族是會被分泌到細胞外的醣蛋白,它的訊號傳遞路徑在多細胞生物的發育過程中扮演相當重要的角色。關於Wnt訊號分子,特別是Wnt3a 分子,在胚胎發育過程中,會誘導MRFs的表現已經被清楚的知道,但是Wnt的訊號傳遞路徑如何去調控MRFs的轉錄活性目前還沒有被研究。本研究中,我們發現Wnt3a可以調控MyoD的表現以及MyoD promoter的活性,因此為了去找尋MyoD promoter上游Wnt3a所誘發相關因子的目標結合位,我們分別將MyoD promoter上游的片段,與帶有MyoD 6k promoter及遠端core enhancer(-25k~-20k)的載體進行接合,利用這些建構載體去檢視由293T所釋放出來的Wnt3a是否可以調控MyoD promoter的活性。結果發現在有Wnt3a的情況下,MyoD core enhancer會促進MyoD 6k promoter的活性,並且MyoD上游約-9Kb到-8Kb區域也會促進MyoD 6k promoter的活性,其餘的片段則發現會抑制
MyoD 6k promoter的活性。未來,由Wnt訊號分子誘發參與調控MyoD表現的因子也將會做進一步研究。
Forkhead box protein 1 (簡稱FoxO1) 又稱為FoxO1,屬於Forkhead family蛋白質成員中的〝O〞subclass。FoxO1可調控細胞的生長、繁殖、肌肉細胞的分化及壽命。在大量表現FoxO1的穩定細胞株C2C12-FoxO1,發現FoxO1有抑制細胞分化的能力。為了要探討FoxO1與肌肉細胞分化的關係,透過免疫螢光染色並處理Leptomycin B這個出核運輸抑制劑,觀察肌肉細胞分化過程中FoxO1的移動方式。結果發現在PMB時期,FoxO1是從核內不斷運送至核外,CMB時期FoxO1則是持續停留在核內。在尚未分化的肌肉細胞中,FoxO1表現累積在細胞核;但在單顆細胞中發現FoxO1移動到細胞質,並且在已分化的肌管中FoxO1也表現在細胞質。表示當細胞分化前FoxO1在細胞核內進行轉錄功能;直到細胞開始分化時,FoxO1移動到細胞質,推測已失去轉錄能力。認為FoxO1肌肉分化過程中所扮演的角色和其存在位置有著相當重要的關聯性。
In skeletal muscle, the terminal differentiation is initiated by the muscle-specific transcription factor MyoD. MyoD belongs to the family of myogenic basic helix-loop-helix transcription factors (MRFs) that are expressed in response to inductive signals coming from tissues adjacent to somites, such as notochord and the neural tube. Wnt signals are among these inductive signals and they are also released by myoblasts. Although it is clear that Wnt, especially Wnt3a, signaling events result in the expression of MRFs during embryogenesis, the mechanistic role for Wnt signaling in the regulation of MRFs expression has not yet been established. In this study we have found that Wnt3a can regulate MyoD expression and its promoter activity. To identify the Wnt3a-targeted region in the MyoD control region, I have inserted different upstream regions of MyoD gene into a vector that contains the MyoD 6k promoter and a distal enhancer (-20k~-25k) to test their response to 293T cells secreted Wnt3a. We found that MyoD 6k promoter is responsive to Wnt3a signal when the distal enhancer exsit. The -9k~-8k elements of upstream regions of MyoD gene have been found that activate the activity of MyoD promoter The other elements of upstream regions of MyoD gene have been found that inhibit the activity of MyoD promoter. In the future, factors mediating the activation effect of Wnt3a signaling on MyoD expression will also be screened.
FoxO1 belongs to the forkhead family that bind to their target sites by their forkhead DNA-binding domain. FoxO1 has been shown to play important roles in the regulation of cell growth, proliferation, differentiation, and longevity. FoxO1 was over-expressed in C2C12 myoblasts (C2C12-FoxO1) and which led to a consistently inhibitory effect on myogenic differentiation. To further elucidate the roles of FoxO1 in myogenesis, Immunofluorescence was used to observed nuclear accumulation of FoxO1 in differentiating myoblasts. Besides, we use the Leptomycin B that inhibitor of nuclear export to observed the localization of FoxO1.We found that FoxO1 was transported from nucleus to cytoplasm in PMB stage, stayed in the nucleus in CMB stage and the expression of FoxO1 was observed in mononucleated cells ready for fusion into multinucleated myotubes. FoxO1 remains cytoplasmic in multinucleated myotubes, implying nuclear exclusion of FoxO1 is prerequisite for terminal differentiation.
Asakura A, Lyons GE, Tapscott SJ (1995) The regulation of MyoD gene expression: conserved elements mediate expression in embryonic axial muscle. Dev Biol 171: 386-398
Behrens J, von Kries JP, Kuhl M, Bruhn L, Wedlich D, Grosschedl R, Birchmeier W (1996) Functional interaction of beta-catenin with the transcription factor LEF-1. Nature 382: 638-642
Berkes CA, Tapscott SJ (2005) MyoD and the transcriptional control of myogenesis. Semin Cell Dev Biol 16: 585-595
Bois PR, Grosveld GC (2003) FKHR (FOXO1a) is required for myotube fusion of primary mouse myoblasts. EMBO J 22: 1147-1157
Borycki A, Brown AM, Emerson CP, Jr. (2000) Shh and Wnt signaling pathways converge to control Gli gene activation in avian somites. Development 127: 2075-2087
Cadigan KM, Nusse R (1997) Wnt signaling: a common theme in animal development. Genes Dev 11: 3286-3305
Chen JC, Goldhamer DJ (2004) The core enhancer is essential for proper timing of MyoD activation in limb buds and branchial arches. Dev Biol 265: 502-512
Chen JC, Love CM, Goldhamer DJ (2001) Two upstream enhancers collaborate to regulate the spatial patterning and timing of MyoD transcription during mouse development. Dev Dyn 221: 274-288
Christ B, Ordahl CP (1995) Early stages of chick somite development. Anat Embryol (Berl) 191: 381-396
Cossu G, Tajbakhsh S, Buckingham M (1996) How is myogenesis initiated in the embryo? Trends Genet 12: 218-223
Davis RL, Weintraub H, Lassar AB (1987) Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51: 987-1000
Gallego Melcon S, Sanchez de Toledo Codina J (2007) Molecular biology of rhabdomyosarcoma. Clin Transl Oncol 9: 415-419
Goldhamer DJ, Faerman A, Shani M, Emerson CP, Jr. (1992) Regulatory elements that control the lineage-specific expression of myoD. Science 256: 538-542
Greer EL, Brunet A (2005) FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene 24: 7410-7425
Guttilla IK, White BA (2009) Coordinate regulation of FOXO1 by miR-27a, miR-96, and miR-182 in breast cancer cells. J Biol Chem 284: 23204-23216
Horsley V, Jansen KM, Mills ST, Pavlath GK (2003) IL-4 acts as a myoblast recruitment factor during mammalian muscle growth. Cell 113: 483-494
Hribal ML, Nakae J, Kitamura T, Shutter JR, Accili D (2003) Regulation of insulin-like growth factor-dependent myoblast differentiation by Foxo forkhead transcription factors. J Cell Biol 162: 535-541
Itaranta P, Lin Y, Perasaari J, Roel G, Destree O, Vainio S (2002) Wnt-6 is expressed in the ureter bud and induces kidney tubule development in vitro. Genesis 32: 259-268
Jia L, Miao C, Cao Y, Duan EK (2008) Effects of Wnt proteins on cell proliferation and apoptosis in HEK293 cells. Cell Biol Int 32: 807-813
Kamei Y, Miura S, Suzuki M, Kai Y, Mizukami J, Taniguchi T, Mochida K, Hata T, Matsuda J, Aburatani H, Nishino I, Ezaki O (2004) Skeletal muscle FOXO1 (FKHR) transgenic mice have less skeletal muscle mass, down-regulated Type I (slow twitch/red muscle) fiber genes, and impaired glycemic control. J Biol Chem 279: 41114-41123
Kennedy KA, Porter T, Mehta V, Ryan SD, Price F, Peshdary V, Karamboulas C, Savage J, Drysdale TA, Li SC, Bennett SA, Skerjanc IS (2009) Retinoic acid enhances skeletal muscle progenitor formation and bypasses inhibition by bone morphogenetic protein 4 but not dominant negative beta-catenin. BMC Biol 7: 67
Lee H, Habas R, Abate-Shen C (2004) MSX1 cooperates with histone H1b for inhibition of transcription and myogenesis. Science 304: 1675-1678
Lohnes D (2003) The Cdx1 homeodomain protein: an integrator of posterior signaling in the mouse. Bioessays 25: 971-980
McKinsey TA, Zhang CL, Olson EN (2001) Control of muscle development by dueling HATs and HDACs. Curr Opin Genet Dev 11: 497-504
Miner JH, Wold B (1990) Herculin, a fourth member of the MyoD family of myogenic regulatory genes. Proc Natl Acad Sci U S A 87: 1089-1093
Munsterberg AE, Kitajewski J, Bumcrot DA, McMahon AP, Lassar AB (1995) Combinatorial signaling by Sonic hedgehog and Wnt family members induces myogenic bHLH gene expression in the somite. Genes Dev 9: 2911-2922
Nakae J, Kitamura T, Silver DL, Accili D (2001) The forkhead transcription factor Foxo1 (Fkhr) confers insulin sensitivity onto glucose-6-phosphatase expression. J Clin Invest 108: 1359-1367
Naya FJ, Wu C, Richardson JA, Overbeek P, Olson EN (1999) Transcriptional activity of MEF2 during mouse embryogenesis monitored with a MEF2-dependent transgene. Development 126: 2045-2052
Norton JD (2000) ID helix-loop-helix proteins in cell growth, differentiation and tumorigenesis. J Cell Sci 113 ( Pt 22): 3897-3905
Olson EN, Klein WH (1994) bHLH factors in muscle development: dead lines and commitments, what to leave in and what to leave out. Genes Dev 8: 1-8
Ordahl CP, Williams BA (1998) Knowing chops from chuck: roasting myoD redundancy. Bioessays 20: 357-362
Petropoulos H, Skerjanc IS (2002) Beta-catenin is essential and sufficient for skeletal myogenesis in P19 cells. J Biol Chem 277: 15393-15399
Ridgeway AG, Petropoulos H, Wilton S, Skerjanc IS (2000) Wnt signaling regulates the function of MyoD and myogenin. J Biol Chem 275: 32398-32405
Rudnicki MA, Jaenisch R (1995) The MyoD family of transcription factors and skeletal myogenesis. Bioessays 17: 203-209
Sandri M, Sandri C, Gilbert A, Skurk C, Calabria E, Picard A, Walsh K, Schiaffino S, Lecker SH, Goldberg AL (2004) Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 117: 399-412
Shulman JM, Perrimon N, Axelrod JD (1998) Frizzled signaling and the developmental control of cell polarity. Trends Genet 14: 452-458
Tajbakhsh S (2003) Stem cells to tissue: molecular, cellular and anatomical heterogeneity in skeletal muscle. Curr Opin Genet Dev 13: 413-422
Tapscott SJ, Lassar AB, Weintraub H (1992) A novel myoblast enhancer element mediates MyoD transcription. Mol Cell Biol 12: 4994-5003
Venters SJ, Thorsteinsdottir S, Duxson MJ (1999) Early development of the myotome in the mouse. Dev Dyn 216: 219-232
Villanueva S, Glavic A, Ruiz P, Mayor R (2002) Posteriorization by FGF, Wnt, and retinoic acid is required for neural crest induction. Dev Biol 241: 289-301
Weintraub H, Tapscott SJ, Davis RL, Thayer MJ, Adam MA, Lassar AB, Miller AD (1989) Activation of muscle-specific genes in pigment, nerve, fat, liver, and fibroblast cell lines by forced expression of MyoD. Proc Natl Acad Sci U S A 86: 5434-5438
Willert K, Brown JD, Danenberg E, Duncan AW, Weissman IL, Reya T, Yates JR, 3rd, Nusse R (2003) Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 423: 448-452
Yagami-Hiromasa T, Sato T, Kurisaki T, Kamijo K, Nabeshima Y, Fujisawa-Sehara A (1995) A metalloprotease-disintegrin participating in myoblast fusion. Nature 377: 652-656
Yun K, Wold B (1996) Skeletal muscle determination and differentiation: story of a core regulatory network and its context. Curr Opin Cell Biol 8: 877-889