| 研究生: |
孫怡婷 Yi-ting Sun |
|---|---|
| 論文名稱: |
聯合長期追蹤與存活資料分析─愛滋病病患之實例分析 Joint modeling of longitudinal and survival data─A case study in AIDS data |
| 指導教授: |
曾議寬
Yi-kuan Tseng |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 統計研究所 Graduate Institute of Statistics |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | CD4百分比 、雞尾酒療法 、部分概似法 、聯合模型 、擴充風險模型 |
| 外文關鍵詞: | the extend hazard model, the jointing model, the partial likelihood method, the percentage of CD4, HAART |
| 相關次數: | 點閱:5 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
CD4淋巴細胞是判斷愛滋病的重要指標,本篇針對愛滋病來研究,主要是觀察CD4百分比與存活時間之間的關係,並探討雞尾酒療法對愛滋病病患的療效,病患在不同時間重複測量CD4百分比作為有興趣的長期追蹤資料,傳統方法是使用部份概似法來分析,但是使用部分概似法必須要知道每一個病患的共變數歷史、不能有測量誤差與測量次數要夠多等要求,但臨床上常會因為個體本身差異與測量誤差等因素導致偏誤的產生。因此我們將使用能同時配適存活時間與長期追蹤資料的聯合模型來解決此種問題。在此我們將針對廣義的擴充風險模型來探討,因為Cox比例風險模型與加速失敗模型就是擴充風險的特例,而且在有時間相依共變數下 (CD4百分比就是時間相依共變數),並沒有一個簡單的方法來檢測加速失敗模型是否能合理配適資料,為解決此問題我們會透過對迴歸參數作華特 (Wald)信賴區間、百分比信賴區間與偏誤修正百分比信賴區間來作模型選擇。
The CD4 lymphocytes is an important indicator of diagnosis of AIDS, this paper mainly studied of AIDS, and investigates the association between the percentage of CD4 and the survival time, and explores the efficacy of HAART to AIDS patients. The patients repeated measurements the percentile of CD4 at different times as an interesting longitudinal data. The traditional approach have been employs the partial likelihood method to analyze the above data, but the partial likelihood method has to recognize the covariate history for each subject, and satisfy the requirements that the measurement error can not exist and the number of measurements should be enough for each subject. However, in the clinical trial, the individual differences, measurement error, and the other factors have usually result in bias. Therefore, we use the jointing model, fitting the survival time and longitudinal data simultaneously, to solve this problem. Here we focus on the generalized extended hazard model because Cox proportional hazards model and accelerated failure model are two special cases of the extended hazard model. Under a time-dependent covariates assumptions, there is no simple method to detect that the accelerated failure model is suitable for data fitting. To solve this problem, we use the regression parameters to do model selection through the Wald confidence interval, the percentile confidence interval and the bias-correction percentile confidence interval.
[1] Brown, E. R., Ibrahim, J. G. and DeGruttola, V.(2005). A flexible B-spline model for multiple longitudinal biomarkers and survival.Biometrics 61, 64-73.
[2] Chen, Y. Q. and Jewell N. P. (2001). On a general class of semiparametric hazards regression models. Biometrka B 88, 687-702.
[3] Cleveland, W. S. (1979). Robust Locally Weighted Regression and Smoothing Scatterplots. Journal of the American Statistical Associtation 74, 829-836.
[4] Cox, D. R. (1972). Regression Models and Life-Tables. Journal of the Royal Statistical Society. Series B (Methodological) 34, 187-220.
[5] Dafini, U. G. and Tsiatis, A. A. (1998). Evaluating surrogate markers of clinical outcome measured with error. Biometrics 54, 1445-1462.
[6] Dempster, A. P., Laird,N. M. and Rubin, D. B. (1977). Maximum Likelihood from Imcomplete Data via the EM Algorithm. Journal of the Royal Statistical Society. Series B (Methodological) 39, 1-38.
[7] Ding, J. and Wang, J. L. (2008). Modeling Longitudinal Data with Nonparametric Multiplicative Random Effects Jointly with Survival Data. Biometrics 64, 546-556.
[8] Dubin, J. A., Müller, H. G. and Wang, J. L. (2001). Event history graphs for censored survival data. Statistics in Medicine 20, 2951-2964.
[9] Eforn, B. (1994). Missing Data, Imputation and the Bootstrap. Journal of American Statistical Association 89, 463-475.
[10] Ciampi, A. and Etezadi-Amoli, J. (1985). A general model for testing the proportional hazards and the accelerated failure time hypothesis in the analysis of censored survival data with covariate. Communications in Statistics 14, 651-667.
[11] Etezadi-Amoli J. and Campi A. (1987). Extended hazard regression for censored survival data with covariates: A spline approximation for the baseline hazard function. Biometrics B 43, 181-192.
[12] Henderson, R., Diggle, P. and Dobson, A. (2000). Joint modeling of longitudinal measurements and event time data. Biostatistics 1,465-480.
[13] Hsieh, F., Tseng, Y. K. and Wang, J. L. (2006). Joint Modeling of Survival and Longitudinal Data: Likelihood Approach Revisited.Biometrics 62,1037-1043.
[14] Lehmann, E. L. (1986). Testing Statistical Hypotheses. New York:Wiley.
[15] Louis,T. A. (1982). Finding the observed Fisher information when using the EM algorithm. Journal of the Royal Statistical Society, Series B (Methodological) 44, 226-233.
[16] Prentice, R.L. (1982). Covariate measurement errors and parameter estimation in failure time regression model. Biometrika 69, 331-342.
[17] Rosner, B. (2006). Fundamentals of Biostatistics (sixth edition). New York:Thomson Learning.
[18] Song, X., Davidian, M. and Tsiatis, A. A. (2002). A Semiparametric Likelihood Approach to Joint Modeling of Longitudinal and Time-to-Event Data. Biometrics 58, 742-753.
[19] Taylor, J. M. G., Fahey, J. L., Detels, R., Giorgi, J.V. (1989). CD4 percentage, CD4 number and CD4: CD8 ratio in HIV infection: which to choose and how to use. Journal of Acquired Immune Deficiency Syndromes 2, 114-124.
[20] Tseng, Y. K., Hsieh, F. and Wang, J. L. (2005). Joint modeling of accelerated failure time and longitudinal data. Biometrika 92,587-603.
[21] Tsiatis, A. A. and Davidian, M. (2001). A semiparametric estimator for the proportional hazards model with longitudinal covariates measured with error. Biometrika 88, 447-458.
[22] Tsiatis, A. A., Degruttola, V. and Wulfsohn, M. S. (1995). Modeling the Relationship of Survival to Longitudinal Data Measured with Error. Applications to Survival and CD4 Coutns in Patients with AIDS. Journal of
the American Statistical Association 90, 27-37.
[23] Wang, Y. and Taylor, J. M. G. (2001). Jointly Modeling Longitudinal and Event Time Data With Application to Acquired Immunodeficiency Syndrome. Journal of the American Statistical Associiation 96, 895-905.
[24] Wulfsohn, M. S. and Tsiatis, A. A. (1997). A Joint Model for Survival and Longitudinal Data Measured with Error. Biometrics 53,330-339.
[25] Zeng, D. and Cai, J. (2005). Asymptotic Results for Maximum Likelihood Estimatiors in Joint Analysis of Repeated Measurements and Survival Time. The Annals of Statistics 33, 2132-2163.
[26] Zeng, D. and Lin, D. Y. (2007b). Efficient Estimation in the Accelerated Failure Time Model. Journal of the American Statistical Association 102,1387-1396.
[27] 行政院衛生署疾病管制局 出版 (2008). 愛滋病檢驗及治療指引.