| 研究生: |
李智曜 Jr-Yau Li |
|---|---|
| 論文名稱: | Chemical evolution of CO:H2S ice mixture under 1 keV electron irradiation |
| 指導教授: |
陳俞融
Yu-Jung Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 英文 |
| 論文頁數: | 62 |
| 中文關鍵詞: | 星際冰晶 、硫化氫 、一氧化碳 、電子作用 、紅外光譜 、質譜儀 、含硫分子 |
| 外文關鍵詞: | interstellar ice, hydrogen sulfide, carbon monoxide, electrons, infrared spectroscopy, mass spectroscopy, S-bearing molecules |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
硫是宇宙中第十豐富的元素,其中H2S是第三豐富的硫物種,僅次於S和HS。此外,H2S被認為是眾多硫分子的重要前導物質,如OCS、CS2、以及SO2分子。在這項研究中,我們通過在CO:H2S混合冰晶照射1 keV的電子,模擬宇宙射線產生的次級電子,研究不同環境對含硫分子的化學衍化影響。我們的結果發現:(一)在較高的CO:H2S比例中,CO和H2S分子具有較低的消耗截面。(二)在實驗中觀察到的主要生成物為CO2、OCS、SO2和CS2分子。其中CO2、OCS和SO2分子的生成速率隨著CO:H2S混合冰晶的比例上升而增加。(三)在所有比例CO:H2S混合冰晶的情況下,消失的硫原子都來自於Sx物種的生成。此外,我們發現CO2和CS2分子的吸收帶對周圍環境(冰晶混合物的組成和其中各分子的相對比例)非常敏感,特別是CO2分子的柱密度,會被紅外吸收特徵的形變及電子激發脫附兩者嚴重影響。
Sulfide is the tenth most abundant element in the universe. The hydrogen sulfide (H2S) is the third most abundant sulfur species, following sulfur atoms and sulfanyl radicals, and serves as an important precursor for S-bearing molecules such as OCS, CS2, and SO2. In this study, we investigated the effect of environmental conditions on the chemical evolution of S-bearing molecules by irradiating CO:H2S ice mixtures with 1 keV electrons, simulating secondary electrons generated from cosmic rays. Our results revealed the following findings: (I) Higher CO:H2S ice mixture ratios lead to lower depletion cross section of parent molecules (CO and H2S). (II) The major products observed were CO2,
OCS, SO2 and CS2. The formation rates of CO2, OCS, and SO2 increased with higher CO:H2S ice mixture ratios. (III) In all cases of CO:H2S ice mixtures, the missing sulfur is attributed to the presence of Sx species. Furthermore, the bands of CO2 and CS2 molecules were found to be sensitive to the surrounding environment (the composition of ice mixtures and the relative proportions of each molecule within them), and the CO2 column density was significantly affected by the interaction between infrared feature distortion and electron stimulated desorption (ESD).
Anderson, D. E., Bergin, E. A., Maret, S., & Wakelam, V. 2013, The Astrophysical
Journal, 779, 141
Asplund, M., Grevesse, N., Sauval, A. J., & Scott, P. 2009, Annual review of astronomy
and astrophysics, 47, 481
Barnes, A., Szczpeaniak, K., & Orville-Thomas, W. 1980, Journal of Molecular Structure,
59, 39
Basner, R., Schmidt, M., Deutsch, H., et al. 1995, The Journal of chemical physics, 103,
211
Bisschop, S., Fuchs, G., Boogert, A., van Dishoeck, E., & Linnartz, H. 2007, Astronomy
& Astrophysics, 470, 749
Blake, G. A., van Dishoeck, E. F., & Sargent, A. I. 1992, The Astrophysical Journal, 391,
L99
Boogert, A., Schutte, W., Helmich, F., Tielens, A., & Wooden, D. 1997, Astronomy and
astrophysics, 317, 929
Caro, G. M., Jim´enez-Escobar, A., Mart´ın-Gago, J., et al. 2010, Astronomy & Astro
physics, 522, A108
Cazaux, S., Carrascosa, H., Caro, G. M., et al. 2022, Astronomy & Astrophysics, 657,
A100
Cecchi-Pestellini, C., & Aiello, S. 1992, Monthly Notices of the Royal Astronomical Soci
ety, 258, 125
Charnley, S. 1997, The Astrophysical Journal, 481, 396
Chen, Y.-J., Chuang, K.-J., Caro, G. M., et al. 2013, The Astrophysical Journal, 781, 15
Chen, Y.-J., Juang, K.-J., Nuevo, M., et al. 2015, The Astrophysical Journal, 798, 80
Chuang, K.-j., et al. 2011, PhD thesis, National Central University
Cook, P. A., Langford, S. R., Dixon, R. N., & Ashfold, M. N. 2001, The Journal of
Chemical Physics, 114, 1672
Cooper, D. M., & Langhoff, S. R. 1981, The Journal of Chemical Physics, 74, 1200
Cosby, P. 1993, The Journal of chemical physics, 98, 7804
Dressler, R., Allan, M., & Tronc, M. 1987, Journal of Physics B: Atomic and Molecular
Physics, 20, 393
Dupuy, R., Haubner, M., Henrist, B., Fillion, J.-H., & Baglin, V. 2020, Journal of Applied
Physics, 128, 175304
Ehrenfreund, P., Boogert, A., Gerakines, P., Tielens, A., & van Dishoeck, E. 1997, As
tronomy & Astrophysics, 328, 649
Ferm, R. J. 1957, Chemical Reviews, 57, 621
Ferrante, R. F., Moore, M. H., Spiliotis, M. M., & Hudson, R. L. 2008, The Astrophysical
Journal, 684, 1210
Garozzo, M., Fulvio, D., Kanuchova, Z., Palumbo, M., & Strazzulla, G. 2010, Astronomy
& Astrophysics, 509, A67
Gerakines, P., Schutte, W., Greenberg, J., & van Dishoeck, E. F. 1994, arXiv preprint
astro-ph/9409076
Hawkins, M., Almond, M. J., & Downs, A. J. 1985, The Journal of Physical Chemistry,
89, 3326
Huang, C., Cecchi-Pestellini, C., Ciaravella, A., et al. 2022, Monthly Notices of the Royal
Astronomical Society, 517, 3078
Huang, C.-H., Ciaravella, A., Cecchi-Pestellini, C., et al. 2020, The Astrophysical Journal,
889, 57
Hudgins, D., Sandford, S., Allamandola, L., & Tielens, A. 1993, Astrophysical Journal
Supplement Series (ISSN 0067-0049), vol. 86, no. 2, p. 713-870., 86, 713
Isoniemi, E., Pettersson, M., Khriachtchev, L., Lundell, J., & R¨as¨anen, M. 1999, The
Journal of Physical Chemistry A, 103, 679
Jamieson, C. S., Mebel, A. M., & Kaiser, R. I. 2006, The Astrophysical Journal Supple
ment Series, 163, 184
Jiang, G. J., Person, W. B., & Brown, K. G. 1975, The Journal of Chemical Physics, 62,
1201
Jim´enez-Escobar, A., & Caro, G. M. 2011, Astronomy & Astrophysics, 536, A91
Jim´enez-Escobar, A., Ciaravella, A., Cecchi-Pestellini, C., et al. 2022, The Astrophysical
Journal, 926, 176
Jim´enez-Escobar, A., Mu˜noz Caro, G., & Chen, Y.-J. 2014, Monthly Notices of the Royal
Astronomical Society, 443, 343
Laas, J. C., & Caselli, P. 2019, Astronomy & Astrophysics, 624, A108
Mart´ın-Dom´enech, R., Manzano-Santamar´ıa, J., Caro, G. M., et al. 2015, Astronomy &
Astrophysics, 584, A14
Maug´e, F., Sahibed-Dine, A., Gaillard, M., & Ziolek, M. 2002, Journal of Catalysis, 207,
353
Mihelcic, D., & Schindler, R. 1970, Berichte der Bunsengesellschaft f¨ur physikalische
Chemie, 74, 1280
Moore, M., Hudson, R., & Carlson, R. 2007, Icarus, 189, 409
Morillo-Candas, A., Silva, T., Klarenaar, B., et al. 2020, Plasma Sources Science and
Technology, 29, 01LT01
Navarro-Almaida, D., Le Gal, R., Fuente, A., et al. 2020, Astronomy & Astrophysics,
637, A39
Palumbo, M., Tielens, A., & Tokunaga, A. T. 1995, The Astrophysical Journal, 449
Petrik, N. G., Monckton, R. J., Koehler, S. P., & Kimmel, G. A. 2014, The Journal of
Physical Chemistry C, 118, 27483
Pugh, L. A., & Narahari Rao, K. 1976, Molecular Spectroscopy: Modern Research, Vol
ume II, 165
Rao, M., & Srivastava, S. 1993, Journal of Geophysical Research: Planets, 98, 13137
Reddy, R., Nazeer Ahammed, Y., Rama Gopal, K., & Baba Basha, D. 2003, Astrophysics
and space science, 286, 419
Rivi`ere-Marichalar, P., Fuente, A., Esplugues, G., et al. 2022, Astronomy & Astrophysics,
665, A61
Schmitt, B., Greenberg, J. M., & Grim, R. 1989, Astrophysical Journal, 340, L33
Sie, N.-E., Caro, G. M., Huang, Z.-H., et al. 2019, The Astrophysical Journal, 874, 35
Tin´e, S., Lepp, S., Gredel, R., & Dalgarno, A. 1997, The Astrophysical Journal, 481, 282
Turner, B. 1995, Astrophysical Journal v. 455, p. 556, 455, 556
—. 1996, Astrophysical Journal v. 461, p. 246, 461, 246
Wandelt, K. 2018, Encyclopedia of interfacial chemistry: surface science and electrochem
istry (Elsevier)
Yamada, H., & Person, W. B. 1964, The Journal of Chemical Physics, 41, 2478
Yarnall, Y. Y., & Hudson, R. L. 2022, The Astrophysical Journal Letters, 931, L4
Zhou, J., Zhao, Y., Hansen, C. S., et al. 2020, Nature Communications, 11, 1547