跳到主要內容

簡易檢索 / 詳目顯示

研究生: 劉美辰
Mei-chen Liu
論文名稱: 以加氫脫氯方式降解液相OCDD/F之效率及控制參數探討
Removal of liquid-phase OCDD/F by catalytic hydrodechlorination
指導教授: 張木彬
Moo-been Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程研究所
Graduate Institute of Environmental Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 112
中文關鍵詞: 戴奧辛鈀觸媒加氫脫氯
外文關鍵詞: PCDD/Fs, palladium catalyst, hydrodechlorination
相關次數: 點閱:7下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討加氫脫氯技術於溫和環境下對於OCDD/F之去除及對廢水中PCDD/Fs之去除與降解特性。PCDD/Fs係持久性有機污染物(Persistent Organic Pollutants, POPs),國內廢水PCDD/Fs排放標準依既(新)設業者規範不同限值,新設業者之限值為5 pg I-TEQ/L,既設業者之限值為10 pg I-TEQ/L。傳統的廢水處理法以活性污泥或碳吸附系統來降解及去除水中汚染物,但這些程序除了可能效果不彰外,也可能僅是對污染物進行分佈相的轉移,未能完全的去除或破壞污染物結構。本研究以具化學還原特性的鈀觸媒加氫脫氯程序進行效率測試。文獻已證實鈀觸媒的產氫效能,證明鈀觸媒可有效轉化有機溶劑產生氫原子,因此加氫脫氯乃利用鈀觸媒的產氫及捕捉氫來還原PCDD/Fs,脫氯成無毒性之產物。然而此技術對於PCDD/Fs破壞的影響因子尚未釐清,因此本研究探討各操作參數的影響及PCDD/Fs的降解途徑。將特定OCDD/F濃度,攪拌速度及溫度條件下,探討溶劑、鹼劑、觸媒劑量、載體效應對OCDD/F催化脫氯降解的影響。實驗結果顯示不同溶劑下,鈀觸媒加氫脫氯OCDD/F以甲醇為溶劑之去除效率及破壞效率最佳,在反應60分鐘內PCDD/Fs總質量去除效率達96%,因此選擇甲醇作為後續試驗溶劑。添加不同劑量鹼劑NaOH於反應系統中,在反應前30分鐘,以1 mM NaOH條件下之PCDD/Fs質量去除效率較高,且去除效率未隨鹼劑添加量增加而上升;過量的NaOH會阻塞觸媒孔洞導致表面積下降,於50 mM NaOH條件下之總PCDD/Fs去除效率最低;反應時間進行至60分鐘,以未添加NaOH條件下之質量PCDD/Fs去除效率較高,故後續實驗不再添加NaOH。此外,觸媒載體對催化結果也有影響,本實驗選擇氧化鋁及活性碳作為載體進行比較,結果顯示Pd/Al2O3的PCDD/Fs去除效率比Pd/C高,特別是破壞效率的差別較大。本研究團隊以自主研發之連續熱裂解模組處理國內中石化安順場受高濃度汞、PCDD/Fs污染土壤,此系統之驟冷塔可捕捉熱處理污染土壤產生之高濃度有機化合物廢氣及高濃度PCDD/Fs冷凝廢水,廢水之PCDD/Fs濃度高達16~44 ng I-TEQ/L,因此針對冷凝廢水PCDD/Fs5之去除進行試驗。首先,使用球狀活性碳進行吸附試驗,結果顯示在液固比為3:1條件下,放流水PCDD/Fs及總汞可符合法規管制標準,高活性碳使用量導致成本過高。進一步,利用加氫脫氯技術處理冷凝廢水。在未添加還原劑條件下,反應180分鐘後PCDD/Fs質量去除效率為53.21%;在添加5%還原劑條件下,反應180分鐘後PCDD/Fs質量去除效率提升為71.86%。然而其毒性濃度仍未達法規管制標準(5 pg I-TEQ/L),因此先將冷凝廢水曝氫氣,使冷凝廢水之氫氣達飽和,再將此廢水進行鈀觸媒催化試驗。結果顯示反應180分鐘後PCDD/Fs質量去除效率提升至97.34%。


    Adsorption with activated carbon is the most commonly applied technology for removing polychlorinated dibenzop-dioxins/ polychlorinated dibenzofurans (PCDD/Fs) from wastewater, but it just transfers PCDD/Fs from liquid phase to solid phase and may lead to secondary pollutions. On the other hand, it is proved that palladium speeds up hydrogenation and dehydrogenation reactions. In this study, hydrodechlorination of PCDD/Fs was investigated over palladium catalyst with select solvents, alkali agents, catalyst weights and catalyst supports. Experimental results indicate that with the initial OCDD/F concentration of 20 μg/L, stirred speed of 250 rpm and operating temperature of 25 oC, the removal efficiency of PCDD/Fs achieved with 5% (wt.) Pd/Al2O3 varies in different solvents. 5% (wt.) Pd/Al2O3 catalyst exhibited higher activity in methanol than in iso-propanol, n-hexane or toluene. With the treatment time of 60 minutes and methanol as solvent, the mass removal efficiency of PCDD/Fs reaches 96%. Different alkali concentrations were added in the reaction system to evaluate the effect and the results indicate that the mass removal efficiency of PCDD/Fs with 1 mM NaOH is better than that without NaOH at a treatment time 30 minutes. However, after 60 minutes treatment the mass removal efficiency of PCDD/Fs in 0 mM NaOH is better than that of 1 mM NaOH as a result of catalyst surface fouling with sodium. In addition, mass removal efficiency of PCDD/Fs decrease as the concentration of NaOH is increased. Moreover, catalyst support is also an important parameter affecting dehydrogenation reactions. Comparison of the destruction efficiency over 5% (wt.) Pd/Al2O3 and 5% (wt.) Pd/C shows that 5% (wt.) Pd/Al2O3 is more active than 5% (wt.) Pd/C for PCDD/Fs removol. Furthermore, this study investigates the effectiveness of AC adsorption and hydrodechlorination in removing PCDD/Fs from wastewater. First, the effectiveness of activated carbon in adsorbing PCDD/Fs from wastewater is evaluated. The result shows that the toxicity concentration of PCDD/Fs is lower than the standard as the ratio of liquid and activated carbon weight is controled at 3:1, however, it is not cost-effective. Hence, hydrodechlorination process is applied to degrade PCDD/Fs. The PCDD/Fs mass removal efficiency without adding reducing agent is 53.21% after operating 180 minutes; with adding 5% reducing agent (methanol), the removal efficiency increases to 71.86%. In addition, to better understand the differences between hydrogen donor and hydrogen molecules, this test had preaerated hydrogen gas into waste condensed water and then palladium catalyst was added for catalytic hydrodechlorination test. The test results show the PCDD/Fs mass removal efficiency increases to 97.34% with the treatment time of 180 minutes.

    目錄 摘要 I Abstract III 目錄 V 圖目錄 VIII 表目錄 XI 第一章 研究緣起與目的 1 1.1 前言 1 1.2 研究目的 2 第二章 文獻回顧 3 2.1 戴奧辛的基本特性 3 2.2 水體中戴奧辛的主要排放源 4 2.3 水質樣品戴奧辛固液相比例 9 2.4 戴奧辛的處理辦法 11 2.4.1 熱處理法 11 2.4.2 生物法 11 2.4.3 化學降解程序 12 2.5 鈀觸媒加氫脫氯程序 12 2.5.1 加氫脫氯反應原理 13 2.5.2 反應途徑 15 2.5.3 加氫脫氯影響因子 23 第三章 研究方法 31 3.1 研究流程 31 3.2 受戴奧辛汚染之廢水採集與預處理 33 3.3 實驗儀器及藥品試劑 35 3.3.1 實驗儀器 35 3.3.2 實驗藥品試劑 35 3.3.3 實驗材料 36 3.4 戴奧辛樣品分析 36 3.4.1 戴奧辛樣品前處理 36 3.4.2 HRMS分析程序 39 3.5 其他儀器原理 43 3.5.1 BET比表面積分析儀 (ASAP 2010) 43 3.5.2 X光繞射分析儀 (XRD) 44 3.5.3 掃描式電子顯微鏡分析(SEM) 45 3.6 研究相關計算公式 46 3.7 實驗設計 47 第四章 結果與討論 51 4.1 冷凝廢水水質分析及活性碳吸附處理 51 4.2 廢水處理之活性碳吸附試驗 54 4.3 觸媒基本物性試驗 56 4.3.1 BET 比表面積分析 56 4.3.2 掃描式電子顯微鏡分析(SEM) 60 4.3.3 X光繞射分析儀 (XRD) 61 4.4 基本操作因子探討 62 4.4.1 背景實驗 62 4.4.2 鈀觸媒加氫脫氯OCDD/F實驗 64 4.5 脫氯途徑推測 73 4.5.1 OCDD脫氯途徑推測 73 4.5.2 OCDF脫氯途徑推測 78 4.6 鈀觸媒加氫脫氯處理冷凝廢水試驗 83 4.6.1 鈀觸媒催化處理廢水之還原劑試驗 83 4.6.2 鈀觸媒催化處理預曝氫之廢水 85 第五章 結論與建議 87 5.1 結論 87 5.2 建議 89 參考文獻 90

    1. Chen, A., Gavaskar, A., Alleman, B., Massa, A., Timberlake, D., Drescher, E., "Treating contaminated sediment with a two-stage base-catalyzed decomposition (BCD) process: bench-scale evaluation.", Journal of Hazardous Materials, 1997. 56: p. 287-306.
    2. McKay, G., "Dioxin characterisation, formation and minimisation during municipal solid waste (MSW) incineration: review.", Chemical Engineering Journal, 2002. 86: p. 343–368.
    3. Field, J.A. and Sierra-Alvarez, R., "Microbial degradation of chlorinated dioxins.", Chemosphere, 2008. 71: p. 1005–1018.
    4. Du, X., Zhu, N., Xia, X., Bao, Z., "Enhancement of biodegradability of polychlorinated dibenzo-p-dioxins.", Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering, 2001. 36.
    5. Nam, I.H., Kim, Y.M., Schmidt, S., Chang, Y.S., "Biotransformation of 1,2,3-tri- and 1,2,3,4,7,8-hexachlorodibenzo-p-dioxin by Sphingomonas wittichii strain RW1.", Applied and Environmental Microbiology, 2006. 72: p. 112–116.
    6. Tiernan, T.O., Wagel, D.J., Vanness, G.F., Garrett, J.H., Solch, J.G., Rogers, C., "Dechlorination of PCDD and PCDF sorbed on activated carbon using the KPEG reagent." Chemosphere, 1989. 19.
    7. Stojkovski, S., James, B.D., Markovec, L.M., Magee, R.J., "Studies on the dechlorination and detoxification of organochlorine compounds (III). Polychlorinated dibenzo [1,4] dioxins and polychlorinated dibenzofurans." Journal of Chemical Technology and Biotechnology, 1992: p. 383–386.
    8. Moon, D.J., Chung, M.J., Parka, K.Y., Hong, S.I., "Deactivation of Pd catalysts in the hydrodechlorination of chloropentafluoroethane." Applied Catalysis A: General, 1998. 168: p. 159–170.
    9. Shekhar, S.C., Murthy, J.K., Rao, P.K., Rama Rao, K.S., "Studies on the modifications of Pd/Al2O3 and Pd/C systems to design highly active catalysts for hydrodechlorination of CFC-12 to HFC-32." Applied Catalysis A: General, 2004. 271: p. 95–101.
    10. Mori, T., Yasuoka, T., Morikawa, Y., "Hydrodechlorination of 1,1,2-trichloro-1,2,2-trifluoroethane (CFC-113) over supported ruthenium and other noble metal catalysts." Catalysis Today, 2004. 88: p. 111–120.
    11. Moreno, J.M., Aramendı´a, M.A., Marinas, A., Marinas, J.M., Urbano, F.J., "Hydrodechlorination of 3-chloropyridine and chlorobenzene in methanol solution over alkali-modified zirconia-supported palladium catalysts." Applied Catalysis B: Environmental, 2005. 59: p. 275-283.
    12. Cobo, M., González, C.A., Sánchez, E.G., Montes, C., "Catalytic hydrodechlorination of trichloroethylene with 2-propanol over Pd/Al2O3." Catalysis Today, 2011. 172: p. 78–83.
    13. Tundo, P., Perosa, A., Selva, M., Zinovyev, S.S., "A mild catalytic detoxification method for PCDDs and PCDFs." Applied Catalysis B: Environmental, 2011. 32: p. L1-L7.
    14. Ukisu, Y., Miyadera, T., "Hydrogen-transfer hydrodechlorination of polychlorinated dibenzo-p-dioxins and dibenzofurans catalyzed by supported palladium catalysts." Applied Catalysis B: Environmental, 2003. 40: p. 141–149.
    15. Schreier, C.G., "The destructive removal of chlorinated organic compounds from water using zero-valent metals or hydrogen and supported palladium." Dept. of Civil Engineering, Stanford University, 1996. Ph.D. Thesis.
    16. McNab, W.W. J., Ruiz, R., "Palladium-catalyzed reductive dehalogenation of dissolved chlorinated aliphatics using electrolytically-generated hydrogen." Chemosphere, 1998. 37: p. 925-936.
    17. Lowry, G.V., Reinhard, M., "Hydrodehalogenation of 1- to 3-carbon halogenated organic compounds in water using a palladium catalyst and hydrogen gas." Environmental Science and Technology, 1999. 33: p. 1905-1910.
    18. Siantar, D.P., Schreier, C.G., Chou, C.S., Reinhard, M., "Treatment of 1,2- dibromo-3-chloropropane and nitrate-contaminated water with zero-valent iron or hydrogen/palladium catalysts." Water Research, 1996. 30: p. 2315-2322.
    19. Muftikian, R., Fernando, Q., Korte, N., "A method for the rapid dechlorination of low molecular weight chlorinated hydrocarbons in water." Water Research, 1995. 29: p. 2434-2439.
    20. Schüth, C. and Reinhard, M., "Hydrodechlorination and hydrogenation of aromatic compounds over palladium on alumina in hydrogen-saturated water." Applied Catalysis B: Environmental, 1998. 18: p. 215-221.
    21. 環保署,「特定事業製程廢水及放流水戴奧辛調查檢測暨排放源清單建置計畫」,2006
    22. Fueno, H., Tanaka, K., Sugawa, S., "Theoretical study of the dechlorination reaction pathways of octachlorodibenzo-p-dioxin." Chemosphere, 2002. 48: p. 771–778.
    23. Okamoto, Y., "A new dioxin decomposition process based on a hybrid density-functional calculation." Chemical Physics Letters, 1999. 310: p. 355–360.
    24. Lu, G.N., Dang, Z., Fennell, D.E., Huang, W., Li, Z., Liu, C.Q., "Rules of thumb for assessing reductive dechlorination pathways of PCDDs in specific systems." Journal of Hazardous Materials, 2010. 177: p. 1145–1149.
    25. Wang, Z.Y., Huang, W.L., Fennell, D.E., Peng, P.A., "Kinetics of reductive dechlorination of 1,2,3,4-TCDD in the presence of zero-valent zinc." Chemosphere, 2008. 71: p. 360–368.
    26. Bokare, V., Jung, J.L., Chang, Y.Y., Chang, Y.S., "Reductive dechlorination of octachlorodibenzo-p-dioxin by nanosized zero-valent zinc: Modeling of rate kinetics and congener profile." Journal of Hazardous Materials, 2013. 250-251: p. 397– 402.
    27. Zhang, F., Chen, J., Zhang, H., Ni, X., Liang, X., "The study on the dechlorination of OCDD with Pd/C catalyst in ethanol–water solution under mild conditions." Chemosphere, 2007. 68: p. 1716–1722.
    28. Cobo, M., Conesa, J.A., Montes de Correa, C., "Effect of the reducing agent on the hydrodechlorination of dioxins over 2 wt.% Pd/γ-Al2O3." Applied Catalysis B: Environmental, 2009. 92: p. 367–376.
    29. Seshu Babu, N., Lingaiah, N., Sai Prasad, P.S., "Characterization and reactivity of Al2O3 supported Pd-Ni bimetallic catalysts for hydrodechlorination of chlorobenzene." Applied Catalysis B: Environmental, 2012. 111-112: p. 309–316.
    30. Lowry, G.V., Reinhard, M., "Hydrodehalogenation of 1- to 3-carbon halogenated organic compounds in water using a palladium catalyst and hydrogen gas." Environmental Science and Technology, 1999. 33: p. 1905-1910.
    31. Ma, X., Liu, Y., Liu, S., Xia, C., "Water-promoted catalytic hydrodechlorination of transformer oil-contained PCBs in liquid system under mild conditions." Applied Catalysis B: Environmental, 2014. 144: p. 580- 587.
    32. Pawelec, B., Campos-M.J.M., Cano-S, E., Navarro, R.M.,Thomas, S., FIERRO, J.L.G., "Removal of PAH compounds from liquid fuels by Pd catalysts." Environmental Science and Technology, 2005. 39: p. 3374–338.
    33. Ukisu, Y. and Miyadera, T., "Dechlorination of dioxins with supported palladium catalysts in 2-propanol solution." Applied Catalysis A: General, 2004. 271: p. 165–170.
    34. González, L.F., Sarria, V. and Sánchez, O.F., "Degradation of chlorophenols by sequential biological-advanced oxidative process using Trametes pubescens and TiO2/UV." Bioresource Technology, 2010. 101: p. 3493-3499.
    35. Sobczyński, Ł.D.A., and Zmudziński, W., "Phenol destruction by photocatalysis on TiO2: an attempt to solve the reaction mechanism." Journal of Molecular Catalysis A: Chemical 2004. 213: p. 225-230.
    36. Tsai, W.T., Lee, M.K., Su, T.Y., Chang, Y.M., "Photodegradation of bisphenol-A in a batch TiO2 suspension reactor." Journal of Hazardous Materials, 2009. 168: p. 269-275.
    37. Urbano, F.J. and Marinas, J.M., "Hydrogenolysis of organohalogen compounds over palladium supported catalysts." Journal of Molecular Catalysis A: Chemical, 2001. 173: p. 329–345.
    38. Xia, C.H, Xu, J., Wu, W.Z., Luo, Q., Chen, J.P., Zhang,Q., Liang, X.M., "Catalytic hydrodechlorination of 2,4,4′-trichloro-2′-hydroxydiphenylether under mild conditions." Applied Catalysis B: Environmental, 2003. 45: p. 281–292.
    39. Xia, C.H., Xu, J., Wu, W.Z., Liang, X.M., "Pd/C-catalyzed hydrodehalogenation of aromatic halides in aqueous solutions at room temperature under normal pressure." Catalysis Communications, 2004. 5: p. 383–386.
    40. Keane, M.A., "Supported transition metal catalysts for hydrodechlorination reactions." ChemCatChem, 2011. 3: p. 800–821.
    41. Gómez-Quero, S., Díaz, E., Cárdenas-Lizana, F., Keane, M.A., "Solvent effects in the catalytic hydrotreament of haloaromatics over Pd/Al2O3 in water+organic mixtures." Chemical Engineering Science, 2010. 65: p. 3786-3797.
    42. 環保署,「同時處理土壤中戴奧辛、五氯酚及汞之整合性技術開發」,2014
    43. Kopinke, F.D., Mackenzie, K., Koehler, R., Georgi, A., "Alternative sources of hydrogen for hydrodechlorination of chlorinated organic compounds in water on Pd catalysts." Applied Catalysis A: General, 2001. 271: p. 119–128.
    44. Cobo, M.I., Conesa, J.A., Montes de Correa, C., "The effect of NaOH on the liquid-phase hydrodechlorination of dioxins over Pd/gamma-Al2O3." The journal of physical chemistry. A., 2008. 112: p. 8715–8722.
    45. 黃煥彰, 「失落的記憶~台鹼安順廠」, 看守台灣,2002. p. 80-88.
    46. Morkel, M., Kaichev, V.V., Rupprechter, G., Freund, H.J., "Methanol dehydrogenation and formation of carbonaceous overlayers on Pd(111) studied by high-pressure SFG and XPS spectroscopy." The Journal of Physical Chemistry B, 2004. 108: p. 12955-12961.
    47. Wu, W. and J. Xu, "Liquid-phase hydrodechlorination of chlorinated benzenes over active carbon supported nickel catalysts under mild conditions." Catalysis Communications, 2004. 5: p. 591–595.
    48. Hsu, L.J., Lee, L.T., Lin, C.C., "Adsorption and photocatalytic degradation of polyvinyl alcohol in aqueous solutions using P-25 TiO2." Chemical Engineering Journal, 2011. 173: p. 698–705.
    49. 洪保鎮,「熱裂解系統對戴奧辛之去除特性研究」,博士論文,國立中央大學,2014.
    50. Weber, R., Sakurai, T., "Formation characteristics of PCDD and PCDF during pyrolysis processes", Chemospere, 2001. 45: p. 1111-1117.
    51. Coll, R., Salvado, J., Farriol, X. and Montand, D., “Steam reforming model compounds of biomass gasification tars: conversion at different operating conditions and tendency towards coke formation”, Fuel Process Technology, 2004. 74, p. 19-31.
    52. Kakimotoa, H., Oka, H., Miyata, Y., Yonezawa, Y., Niikawa, A., Kyudo, H., Tang, N., Toriba, A., Kizu, R., Hayakawa, H., “Homologue and isomer distribution of dioxins observed in water samples collected from Kahokugata Lagoon and inflowing rivers, Japan” Water Research, 2006, 40, p. 1929-1940.
    53. 蔡清蘭、吳仲平、彭瑞華、翁英明,「水體中懸浮態與溶解態之戴奧辛濃度分布探討」,2006年環境分析研討會。

    QR CODE
    :::