| 研究生: |
游天福 Tien-fu Yu |
|---|---|
| 論文名稱: |
關於三物種間之高流動性Lotka-Vollterra競爭擴散系統的波形極限行為 Limiting Profiles of Lotka-Volterra Competition-diffusion System with Large Advection in Three Species Dynamics |
| 指導教授: |
陳建隆
Jann-long Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系 Department of Mathematics |
| 畢業學年度: | 99 |
| 語文別: | 英文 |
| 論文頁數: | 31 |
| 中文關鍵詞: | 極限行為 、競爭擴散系統 |
| 外文關鍵詞: | advection, diffusion, competition, Lotka-Volterra |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文中,我們首先考慮兩個相互競爭的物種在異構環境的Lotka-Volter- ra competition-diffusion-advection model。這兩類物種除了他們的流動策略外,是完全相同的,而不同的流動策略是指:一類是隨機擴散,另一類則是“較聰明”─ 結合的隨機擴散和定向運動增加的環境梯度。在[3]裡面,Prof. Chen和Prof. Lou給了一個猜想,如果環境函數有多個局部極大值,那麼“較聰明”的物種,將會集中在所有該環境函數的局部極大值。然而,在[6]裡,Prof. Ni 和Dr. Lam發現,假如隨機擴散的物種在環境函數的局部極大值高於環境函數,會導致“較聰明”的物種被滅絕。在這篇文章中,我們考慮三類物種的Lotka-Volterra competition-diffusion-advection model,並期望會有與Prof. Ni 和Dr. Lam類似的結論可以被證明。
In this thesis, we first consider a Lotka-Volterra competition-diffusion-advection model for two competing species in a heterogeneous environment. The two species are identical except for their dispersal strategies: One is just random diffusion while the other is "smarter"- a combination of random diffusion and a directed movement up the environmental gradient. In [3], Chen and Lou conjectured that if the environment function $m$ has multiple local maxima, then the "smarter" species must concentrate at all local maximum of m. Nevertheless, in [6], Lam and Ni found that the "smarter" species will die out if the local maximum of m is smaller than the density of the other species. In this article, we consider a model of three species and expect that the related results will be similar to those in [6].
[1] Fethi Belgacem and Chris Cosner, The effects of dispersal along environmental gradients on the dynamics of populations in heterogeneous environment, Canadian Appl. Math. Quart., 3 (1995), 379-397.
[2] Robert R. Cantrell, Chris Cosner and Yuan Lou, Advection mediation coexistence of competing species, Proc. Royal Soc. Edinburgh (A), 137 (2007), 497-518.
[3] Xinfu Chen and Yuan Lou, Principal eigenvalue and eigenfunction of elliptic operator with large convection and its application to a competition model, Indiana Univ. Math. J., 59 (2008), 627-658.
[4] Jack Dockery, Vivian Hutson, Konstantin Mischaikow and Mark Pernarowski, The evolution of slow dispersal rates: A reaction-diffusion model, J. Math. Biol., 37 (1998), 61-83.
[5] King-Yeung Lam, Concentration phenomena of a semilinear elliptic equation with large advection in population dynamics, J. Differential Equations, 250 (2011), 161-181.
[6] King-Yeung Lam and Wei-Ming Ni, Limiting profiles of semilinear elliptic equations with large advection in population dynamics, Dis. Cont. Dyn. Syst., 28 (2010), no. 3, 1051-1067.
[7] Vivian Hutson, Yuan Lou, and Konstantin Mischaikow, Convergence in competition models with small diffusion coefficients, J. Differential Equations, 211 (2005), no. 1, 135-161.
[8] Wei-Ming Ni, Diffusion and directed movement in heterogeneous environment, KAIST Mathematics colloquium, February 2011, Korea, downloaded from ”http://www.mathnet.or.kr/real/2011/02/WeiMingNi4(0224).pdf”.