跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黃祐祥
Yu-Hsiang Huang
論文名稱: 多重影像匹配於房屋模型重建
Multiple images matching for 3D building modeling
指導教授: 陳良健
Liang-Chien Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
畢業學年度: 98
語文別: 中文
論文頁數: 117
中文關鍵詞: 房屋重建多視窗匹配整合式匹配多重影像匹配
外文關鍵詞: Multi-windows matching, Multi-eipolar matching, Building reconstruction, Multiple images matching
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 三維地理資訊系統為了描述現實世界,常使用物空間環境特徵。其構成元素包含房屋、道路、植被等,其中房屋為最顯著者。重建三維房屋模型,最常見的資料來源之一為航照影像。使用航照影像重建三維房屋模型,處理過程分為三大部分:房屋偵測、影像匹配及模型重建。
    本研究結合多航帶高重疊數位航照影像,進行房屋模型重建,處理重點為多重影像匹配及模型重建。處理屋頂形狀包含山型屋、女兒牆房屋及具有屋頂副結構之平頂屋。研究中在主影像中概略圈選房屋工作區,利用輪廓特徵偵測房屋資訊,以便後續影像匹配。利用多重影像匹配技術來搜尋共軛特徵,經由二維特徵的線追蹤並加入三維資訊進行判斷,得到三維房屋邊緣線段,配合著利用房屋特徵點所偵測出屋頂內部資訊進行房屋模型重建。
    實驗成果顯示,多重影像匹配有效提升匹配精度,利用屋頂面資訊也可改善模型高程精度,房屋模型與參考資料相比,三軸方向之均方根誤差(RMSE)可達40公分內。


    Three dimensional geographic information systems describe the reality with environmental elements such as buildings, roads, vegetation etc. Among those elements, building is the most prominent. Aerial images are commonly used in building reconstruction. In building reconstruction with aerial images, building detection, image matching, and building modeling are the three major works.
    This study uses multiple strips acquired from highly overlapped aerial images to perform 3D building modeling. Multiple image matching and building modeling are the major works in this study. Test cases include different types of building roofs. We first select the working area in the master image to extract building features. Then, the detection of building information with line features can aid the image matching. Multiple image matching employs multi-windows with multi-epipolar constraint to find conjugate positions in the same procedure. In the generation of line segments, line tracing is performed in the image space with 3D information. Building modeling is made by the integration building boundaries and roof surface information.
    The results show that multiple images matching can improve the matching accuracy. Model refinement with 3D roof point clouds can work well. Compared with reference data, the RMSE of building model in most of case can be smaller than 0.4m.

    摘要I Abstract II 誌謝 III 目錄 IV 圖目錄 VIII 表目錄 XII 第一章 前言 1 1.1. 研究動機與目的 1 1.2. 文獻回顧 3 1.3. 研究流程 6 1.3.1.資料前處理 7 1.3.2.房屋輪廓分析 8 1.3.3.房屋屋頂分析 9 1.3.4.三維房屋重建 10 1.3.5.成果分析及證驗 10 第二章 研究方法 11 2.1. 資料前處理 12 2.2. 線型結構萃取 12 2.3. 匹配幾何預估 13 2.3.1.房屋主軸分析 13 2.3.2.屋角區偵測 14 2.3.3.房屋高程範圍估計 14 2.3.4.匹配工作區預估 15 2.4. 多重影像匹配 16 2.4.1.整合式匹配 17 2.4.2.匹配視窗 21 2.4.3.匹配指標 23 2.4.4.視窗旋轉 24 2.4.5.權之給定 25 2.4.6.局部微調 26 2.5. 特徵分佈補強 27 2.6. 屋頂資訊偵測 29 2.7. 房屋線段產生 30 2.7.1.空間前方交會 31 2.7.2.三維線段產生 32 2.8. 模型重建 34 第三章 研究成果與分析 36 3.1. 實驗資料 36 3.2. 參考資料 41 3.3. 測試例資料 41 3.4. 實驗成果 47 3.4.1.實驗使用參數 47 3.4.2.三維線段 48 3.4.3.房屋模型 58 3.5. 成果分析 70 3.5.1.航照影像幾何分析 70 3.5.2.視窗大小對定位之影響分析 71 3.5.3.多視窗貢獻及視窗旋轉貢獻 73 3.5.4.匹配成功率及可靠度分析 76 3.5.5.匹配局部微調成效 81 3.5.6.參考資料精度分析 83 3.5.7.模型精度及完整度分析 85 3.5.8.不規則三角網分佈及屋頂高程面求取 89 3.6. 實驗總結 94 第四章 結論與建議 95 參考文獻 98

    張劍清,張祖勛,徐芳,朱英浩,1998,「城市大比例尺影像三維景觀重建」,武漢測繪科技大學學報,Vol.23,No.4,pp.355-358.
    李良輝,1991,「計算視覺方法於SPOT影像幾何特性分析」,博士論文,國立中央大學大氣物理研究所。
    徐偉城,1999,「空照彩色立體像對中人工建築物萃取之研究」,
    碩士論文,國立中央大學土木工程研究所。
    吳華泰,2003,「整合特徵資訊的區域匹配法研究」,
    碩士論文,國立台灣大學土木工程研究所。
    鄭傑文,2007,「射影幾何於攝影測量之應用」,
    碩士論文,國立台灣大學土木工程研究所。
    蔡函芳,2009,「多重影像匹配於房屋邊緣線三維定位」,
    碩士論文,國立中央大學土木工程研究所。
    Baillard, C., and Zisserman, A., 2000. A plane sweep strategy for the 3Dreconstruction of buildings from multiple images, International Archives of Photogrammetry and Remote Sensing, Vol. 33, Part B3, pp. 56-62.
    Canny, J., 1986. A Computational Approach to Edge Detection, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. PAMI-8, pp. 679-698.
    Criminisi, A., “Accurate visual metrology from single and multiple uncalibrated images”. Distinguished dissertation Series. Springer-Verlag, London, Sep. 2001.
    Henricsson, O. and Baltsavias, E., 1997, “3-D Building Reconstruction with ARUBA: A Qualitative and Quantitative Evaluation”, Automatic Extraction of Man-Made Objects from Aerial and Space Images (II) Monte Verita, pp.65-76.
    Chang, H., and Tsai, F., 2009. 3D Building Model Reconstruction from a single image, Asian Journal of Geoinformatics, Vol. 9, No.4, pp. 41-44.
    Lang, F., 1995. A One-eye Stereo System for Semi-automatic 3D-building Extraction.Geomatic Info Magazine:1-4.
    Noronha, S., and Nevatia, R., 2001. Detection and modeling of buildings from multiple aerial images, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 23, No. 5, pp. 501-518.
    Overby, J., Bodum, L., Kjems, E., and Ilsoe, P.M., 2004. Automatic 3d
    Building Reconstruction from Airborne Laser Scanning and Cadastral Data Using Hough Transform, International Archives of Photogrammetry and Remote Sensing, Vol. 35, Part B3, pp. 298-303.
    Rau, J.Y., and Chen, L.C., 2003. Robust Reconstruction of Building Models from Three-Dimensional Line Segments, Photogrammetry Engineering and Remote Sensing, Vol. 69, No. 2, pp.181-188.
    Rottensteiner, F., and Briese, C., 2003. Automatic Generation of Building
    Models from LiDAR Data and the Integration of Aerial Images, International Archives of Photogrammetry and Remote Sensing, Vol. 34, Part3/W13, pp. 298-303.
    Suveg, I., and Vosselman, G., 2004. Reconstruction of 3D building models from aerial images and maps, ISPRS Journal of Photogrammetry & Remote Sensing, Vol. 58, pp. 202-224.
    Tseng, Y.H., and Wang, S., 2003. Semiautomatic building extraction based on CSG model-image fitting, Photogrammetric Engineering & Remote Sensing, Vol. 69, No. 2, pp.171-179.
    X. Jin, C. H. Davis., 2005. Automated Building Extraction from High-Resolution Satellite Imagery in Urban Areas Using Structural, Contextual, and Spectral Information, EURASIP Journal on Applied Signal Processing, Vol. 14, pp.2196-2206.
    Yuan, H., Lu, Z.P., Bi, W., 2005, Reconstruction of 3D Drawing Based on Knowledge Reasoning, Journal of mechanism, Vol.36, No.9, pp.110-115.
    Zhang, L., and A. Gruen, 2006. Multi-image matching for DSM generation from IKONOS imagery, ISPRS Journal o Photogrammetry & Remote Sensing, 60(3):195-211.

    QR CODE
    :::