跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黃郁淳
Yu-Chun Huang
論文名稱: 太空電漿中跨尺度快波中速波與慢波的頻散關係之研究
A Study of the Cross-Scale Dispersion Relation of the Fast-mode,Intermediate-mode and Slow-mode Waves in Space PlasmaA Study of the Cross-Scale Dispersion Relation of the Fast-mode, Intermediate-mode and Slow-mode Waves in Space Plasma
指導教授: 呂凌霄
Ling-Hsiao Lyu
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 太空科學研究所
Graduate Institute of Space Science
畢業學年度: 99
語文別: 中文
論文頁數: 77
中文關鍵詞: 頻散關係正離子與電子雙流體模型
外文關鍵詞: ion-electron two-fluid model, dispersuisn relation
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 因為磁流體電漿模型忽略了正離子慣性效應,所以無法用磁流體模型解釋在太空中觀測到的中、小尺度電漿物理現象。由於正離子與電子雙流體模型在長波極限時,就相當於磁流體模型。可是如果考慮正離子慣性效應、電子慣性效應、電荷分離與位移電流效應的話,這種雙流體模型又可涵蓋中、小尺度電漿波動的頻散效應,因此可以用來探討磁流體波模由低頻向中、高頻延伸的情形。本論文分析不同簡化程度的正離子與電子雙流體電漿模型,探討正離子慣性效應、電子慣性效應、及電荷分離效應對於磁流體波模之跨尺度頻散關係的影響。本論文的研究結果,將有助於未來太空觀測與數值模擬的研究。


    The magnetohydromagnetic (MHD) plasma model ignores the ion inertial effect, so it cannot explain the meso-scale and micro-scale plasma phenomena observed in the space. At the long-wavelength limit, the ion-electron two-fluid plasma model is equivalent to the MHD plasma model, whereas the dispersion effects of the meso-scale and micro-scale plasma waves can also be included in the two-fluid plasma model if the effects of ion inertia, electron inertia, charge separation and displacement current are considered. Therefore, we can use the two-fluid model to study the cross-scale dispersion of the fast-mode, intermediated-mode, and slow-mode waves. The ion inertial effect, electron inertial effect, and the charge-separation and displacement current effect on the meso- and micro-scales wave dispersions will be examined based on four different simplified two-fluid models. The results of this thesis will provide a useful theoretical basis to assist the future studies on the multi-scale observations and the cross-scale simulations of the space plasma.

    目錄 中文摘要i 英文摘要ii 致謝iii 目錄Iv 圖目錄v 表目錄vii 第一章 導論1 第二章 正離子與電子雙流體電漿系統中多尺度現象之評估與分析3 2.1 Model D的正離子與電子雙流體系統頻散關係式8 2.2 Model C的正離子與電子雙流體系統頻散關係式11 2.3 Model B的正離子與電子雙流體系統頻散關係式14 2.4 Model A的正離子與電子雙流體系統頻散關係式15 第三章 不同簡化模型下快波、中速波與慢波之波速隨波長變化情22 第四章 快波、中速波與慢波之線性波特性分析50 4.1 快波、中速波與慢波之靜電波與電磁波分析51 4.2 平行或斜向於背景磁場傳播的正離子聲波56 4.3 接近垂直背景磁場傳播的Lower hybrid waves57 4.4 接近垂直背景磁場傳播的Inertial Alfven waves59 第五章 總結與討論65 參考文獻67

    Bellan, P. M. (2006), Fundamentals of Plasma Physics, Cambridge University Press , New York.
    Cao, F., and J. Kan (1987), Finite‐Larmor‐radius effect on field‐aligned currents in hydromagnetic waves, J. Geophys. Res., 92(A4), 3397-3401.
    Chen, F. F. (1984), Introduction to Plasma Physics and Controlled Fusion, Volume 1: Plasma Physics, 2nd edition, Plenum Press, New York.
    Formisano, V. , and C. F. Kennel (1969), Small amplitude waves in high β plasmas, J. Plasma Phys., 3, 55-74.
    Goertz, C. K.( 1989), Dusty plasmas in the solar system, Rev. Geophys., 27(2),271-292.
    Huba, J. D. (1995), Hall magnetohydrodynamics in space and laboratory plasmas, Phys. Plasmas 2, 2504. doi:10.1063/1.871212
    Huba, J. D., and L. I. Rudakov (2004), Hall magnetic reconnection rate, Phys. Rev. Lett., 93, 175003., DOI:10.1103/PhysRevLett.93.175003
    Kageyama, A., and T. Sato (1997), Generation mechanism of a dipole field by a magnetohydrodynamic dynamo, Phys. Rev. E, 55, 4617–4626.
    Kantrowitz, A., and H. E. Petschek (1966), MHD characteristics and shock
    waves, in Plasma Physics in Theory and Application, edited by W. B.
    Kunkel, p. 148, McGraw-Hill Inc., New York.
    Lyu, L. H. (2010), Elementary Space Plasma Physics, National Central University Press & Airiti Press, Chung-li, Taiwan, R.O.C.
    Lyu, L. H., and J. R. Kan (1989), Nonlinear two-fluid hydromagnetic waves in the solar wind: Rotational discontinuity, soliton, and finite-extent Alfvén wave train solutions, J. Geophys. Res., 94(A6), 6523–6538, doi:10.1029/JA094iA06p06523.
    Lai, S. H., and L. H. Lyu (2006), Nonlinear evolution of the MHD Kelvin-Helmholtz instability in a compressible plasma, J. Geophys. Res., 111, A01202, doi:10.1029/2004JA010724
    Lai, S. H., and L. H. Lyu (2008), Nonlinear evolution of the jet-flow-associated Kelvin-Helmholtz instability in MHD plasmas and the formation of Mach-cone-like plane waves, J. Geophys. Res., 113, A06217, doi:10.1029/2007JA012790.
    Neugebauer, M. (1975), The enhancement of solar wind fluctuations at the proton thermal gyro radius, J. Geophys. Res., 80(7), 998–1002, doi:10.1029/JA080i007p00998.
    Stasiewicz, K. (1993), Finite Larmor radius effects in the magnetosphere, Space Sci. Rev., 65 , 221-252., DOI: 10.1007/BF00754509
    Stringer, T. E. (1963), Low-frequency waves in an unbounded plasma, J. Nucl. Energy, Part C Plasma Phys., 5, 89-107.
    Watt, C. E. J., R. Rankin, I. J. Rae, and D. M. Wright (2006), Inertial Alfvén waves and acceleration of electrons in nonuniform magnetic fields, Geophys. Res. Lett., 33, L02106, doi:10.1029/2005GL024779.
    Wang, X., A. Bhattacharjee, and Z. Ma (2000), Collisionless reconnection: Effects of Hall current and electron pressure gradient, J. Geophys. Res., 105(A12), 27633-27648.

    QR CODE
    :::