跳到主要內容

簡易檢索 / 詳目顯示

研究生: 巫宗翰
Tzung-han Wu
論文名稱: 氧化鋅薄膜於超音波聚焦噴墨裝置之設計分析與製作
Design and Fabrication of Ultrasonic Focusing Printing Device with ZnO Thin Film
指導教授: 潘敏俊
Min-Chun Pan
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 97
語文別: 英文
論文頁數: 88
中文關鍵詞: 菲涅爾透鏡壓電換能器氧化鋅薄膜超音波噴墨
外文關鍵詞: Fresnel lens, Piezoelectric transducer, ZnO film, Ultrasonic ejector
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 超音波聚焦噴墨技術為近幾年研究發展的一種新穎之噴墨機制。不同於熱氣泡式以及壓電式噴墨法,超音波聚焦噴墨法不需噴嘴及加熱即可達到噴墨之效果。本研究旨在製造並且分析超音波聚焦噴墨裝置中之兩個主要元件:菲涅爾透鏡與氧化鋅換能器。研究中我們使用微機電製程之技術製作操作頻率為100 MHz與200 MHz之菲涅爾聚焦透鏡。透過表面輪廓分析儀與掃描式電子顯微鏡之量測,可觀測出所製作之菲涅爾聚焦透鏡具有三階與四階之結構。在換能器方面,我們使用射頻磁控式濺鍍法來沉積氧化鋅薄膜,並製作結構為 Al/ZnO/Pt/Ti/SiO2/Si 之壓電換能器。將所製作之氧化鋅換能器進行X光繞射儀量測以觀察氧化鋅薄膜之晶體結構。並藉由觀測X光繞射圖中之c軸方向以獲得濺鍍時合適之基板溫度。最後,使用安捷倫公司所生產型號為4395A之阻抗分析儀量測厚度分別為15.31、20.9與24.9 μm氧化鋅薄膜之阻抗值,並証實其共振頻率分別為186.5、131.5與112.2 MHz。


    Ultrasonic focusing printing technology is a novel droplet ejection mechanism which has been developed in recent years. Different to the thermal-bubble and piezoelectric printing methods, the ultrasonic focusing printing method ejects droplets required neither nozzle nor heat. The study investigates the fabrication of ultrasonic focusing printing device, especially two main components including Fresnel lens and ZnO transducer. The binary Fresnel lenses with operating frequency at 100 MHz and 200 MHz are fabricated by MEMS technology. The three-level and four-level structural Fresnel lens can be observed by using α-step and SEM. In the aspect of transducer, the ZnO thin films are deposited by RF magnetron sputtering to construct an Al/ZnO/Pt/Ti/SiO2/Si structure piezoelectric transducer. XRD measurement is performed to characterize the crystal structure of ZnO thin films and find suitable substrate temperature for getting well c-axis orientation. The impedance of 15.31, 20.9, and 24.9 μm ZnO transducers are measured by using Agilent 4395A impedance analyzer. It is confirmed that their resonant frequencies of 186.5, 131.5, and 112.2 MHz, respectively.

    CHAPTER 1 INTRODUCTION 1 1.1 Background 1 1.2 Literature Review 5 1.3 Motivation and Framework 7 CHAPTER 2 THEORETICAL BASIS OF ULTRASONIC INKJET EJECTOR 9 2.1 Piezoelectric Transducer 9 2.1.1 Piezoelectric effect 10 2.1.2 Piezoelectric constitutive equations and constants 12 2.1.3 Analysis of piezoelectric resonant frequency with Mason’s model 14 2.2 Sound and Ultrasound 19 2.2.1 Sound excitation and propagation 20 2.2.2 Physical properties of ultrasound 20 2.3 Ultrasonic Focusing Lens 28 2.3.1 Mechanisms of sound wave convergence 28 2.3.2 Parameters of binary Fresnel lens dimension 34 CHAPTER 3 FABRICATION OF THE ULTRASONIC INKJET EJECTOR 36 3.1 Fabrication of Binary Fresnel Lens 36 3.1.1 Dimension of binary Fresnel lens 36 3.1.2 Fabrication processes of binary Fresnel lens 38 3.2 Fabrication of ZnO Ultrasonic Transducers 46 3.2.1 Crystal structure of ZnO thin films 47 3.2.2 Resonant frequency of ZnO ultrasonic transducers 48 3.2.3 Properties of plasma 51 3.2.4 Instrument of sputtering 53 3.2.5 Fabrication processes of ZnO ultrasonic transducers 56 CHAPTER 4 RESULT AND ANALYSIS OF THE ULTRASONIC INKJET EJECTOR 59 4.1 Result and Analysis of Binary Fresnel Lens Fabrication 59 4.1.1 Surface profile of binary Fresnel lens fabrication 59 4.1.2 SEM images of binary Fresnel lens fabrication 61 4.2 Property Measurements of ZnO Ultrasonic Transducers 64 4.2.1 Crystallization of ZnO thin films 64 4.2.2 Effects of substrate temperature on crystallization of ZnO thin films 65 4.2.3 Impedance measurement of ZnO ultrasonic transducers 69 CHAPTER 5 CONCLUSIONS 72 5.1 Concluding Remarks 72 5.2 Future Works 73 BIBLIOGRAPHY 74

    Brünahl, J., “Physics of Piezoelectric Shear Mode Inkjet Actuators,” Doctoral Dissertation, Department of Condensed Matter Physics, Royal Institute of Technology (Kungl Tekniska Högskolan, KTH), Stockholm, Sweden (2003).
    Chu, B. T., and Apefl, R. E., “Acoustic Radiation Pressure Produced by a Beam of Sound,” Journal of the Acoustical Society of America, Vol. 72, No. 6, pp. 1673-1687 (1982).
    Chien, Y. N., “Analysis and Design of a Micro-droplet Inkjet Ejector Using New-designed Fresnel Lenses Focusing Acoustic Energy,” Master Thesis, Department of Mechanical Engineering, National Central University, Jhongli, Taiwan (2005).
    Chan, S. C., Mina, M., Udpa, S. S., Udpa, L., and Lord, W., “Finite Element Analysis of Multilevel Acoustic Fresnel Lenses,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 43, No. 4, pp. 670-677 (1996).
    Defranould, Ph., “High Deposition Rate Sputtered ZnO Thin Films for BAW and SAW Applications,” Proceedings of 1981 IEEE Ultrasonics Symposium, pp.483-488 (1981).
    Duval, F. F. C., Dorey, R. A., Wright, R. W., Huang, Z., and Whatmore, R. W., “Fabrication and Modeling of High-Frequency PZT Composite Thick Film Membrane Resonators,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 51, No. 10, pp. 1255-1261 (2004).
    Elrod, S. A., Hadimioglu, B., Khuri-Yakub, B. T., Rawson, E. G., Richley, E., and Quate, C. F., “Nozzleless Droplet Formation with Focused Acoustic Beams,” Journal of Applied Physics, Vol. 65, No. 9, pp. 3441-3447 (1989).
    Fukumoto, H., Aizawa, J., Nakagawa, H., and Narumiya, H., “Printing with Ink Mist Ejected by Ultrasonic Waves,” Journal of Imaging Science and Technology, Vol. 44, No. 5, pp. 398-405 (2000).
    Hadimioglu, B., Elrod, S., and Sprague, R., “Acoustic Ink Printing: An Application of Ultrasonics for Photographic Quality Printing at High Speed,” Proceedings of 2001 IEEE Ultrasonics Symposium, pp. 627-633 (2001).
    Hadimioglu, B., Elrod, S. A., Steinmetz, D. L., Lim, M., Zesch, J. C., Khuri-Yakub, B. T., Rawson, E. G., and Quate, C. F., “Acoustic Ink Printing,” Proceedings of 1992 IEEE Ultrasonics Symposium, pp. 929-935 (1992).
    Hadimioglu, B., Rawson, E. G., Lujan, R., Lim, M., Zesch, J. C., Khuri-Yakub, B. T., and Quate, C. F., “High-Efficiency Fresnel Acoustic Lenses,” Proceedings of 1993 IEEE Ultrasonics Symposium, pp. 578-582 (1993).
    Huang, D., and Kim, E. S., “Micromachined Acoustic-Wave Liquid Ejector,” Journal of Microelectromechanical Systems, Vol. 10, No. 3, pp. 442-449 (2001).
    Hsiao, J. E., “Analysis and Fabrication of Ultrasonic Inkjet Ejector,” Master Thesis, Department of Mechanical Engineering, National Central University, Jhongli, Taiwan (2007).
    Kameyama, S., Fukmoto, H., Kimura, T., and Wadaka, S., “Ink Mist Jet Generation Using Low Frequency Focused Ultrasonic Waves and Nozzle,” Proceedings of 1999 IEEE Ultrasonics Symposium, pp. 695-698 (1999).
    Kwon, J. W., Zou, Q., and Kim, E. S., “Directional Ejection of Liquid Droplets Through Sectoring Half-Wave-Band Sources of Self-Focusing Acoustic Transducer,” Proceeding of 15th MEMS, 2002 IEEE International Conference, pp. 121-124 (2002).
    Kinsler, L. E., Frey, A. R., Coppens, A. B., and Sanders, J. V., Fundamentals of Acoustics, John Wiley & Sons, Inc., Hoboken, New Jersey (2000).
    Lee, C. Y., Yu, H., and Kim, E. S., “Acoustic Ejector with Novel Lens Employing Air-Reflectors,” Proceeding of 19th MEMS, 2006 IEEE International Conference, pp. 170-173 (2006).
    Lin, R. C., Chen, Y. C., Kao, K. S., “Two-step Sputtered ZnO Piezoelectric Films for Film Bulk Acoustic Resonators,” Journal of Applied Physics A: Materials Science & Processing, Vol. 89, No. 23, pp. 475-479 (2007).
    Lee, K. Z., “Simulation, Fabrication, and Characteristic Measurement of Piezoelectric Ultrasound Transducer with Non-uniform Thickness,” Master Thesis in Chinese, Department of Mechanical Engineering, National Cheng Kung University, Tainan, Taiwan (2003).
    Li, J., Wu, S., and Kang, J., “ZnO Films Deposited by Magnetron Sputtering,” Proceeding of 13th Semiconducting and Insulating Materials, 2004 IEEE International Conference, pp. 77-80 (2004).
    Martin, P. M., Good, M. S., Johnston, L. W., Posakony, G. L., Bond, L. J., and Crawford, S. L., “Piezoelectric Films for 100-MHz Ultrasonic Transducers,” Journal of Thin Solid Films, Vol. 379, Issue 1-2, pp. 253-258 (2000).
    Menz, W., Mohr, J., and Paul, O., Microsystem Technology, Wiley-VCH, New York (2001).
    Nam, K., Park, Y., Ha, B., Shim, D., and Song, I., “Piezoelectric Properties of Aluminum Nitride for Thin Film Bulk Acoustic Wave Resonator,” Journal of the Korean Physical Society, Vol. 47, No. 92, pp. S309-S312 (2005).
    Rosenbaum, J. F., Bulk Acoustic Wave Theory and Devices, Artch House, Inc., Norwood, Massachusetts (1988).
    Shao, S., Zhang, J., Zhang, Z., Zheng, P., Zhao, M., Li, J., and Wang, C., “High Piezoelectric Properties and Domain Configuration in BaTiO3 Ceramics Obtained Through the Solid-State,” Journal of Physics D: Applied Physics, Vol. 41, No. 12, pp. 125408 (2008).
    Su, H. Y., “Fabrication of High Frequency ZnO Thin Film SAW Devices With Different Buffer Layers by RF Magnetron Sputtering,” Master Thesis, Department of Electro-Optical Engineering, Tatung University, Taipei, Taiwan (2005).
    Schreiter, M., Gabl, R., Pitzer, D., Primig, R., Wersing, W., “Electro-acoustic Hysteresis Behaviour of PZT Thin Film Bulk Acoustic Resonators,” Journal of the European Ceramic Society, Vol. 24, Issue 6, pp. 1589-1592 (2004).
    Shen, S. W., “Analysis and Fabrication of a Film Bulk Acoustic Wave Resonator,” Master Thesis in Chinese, Institute of Applied Mechanics, National Taiwan University, Taipei, Taiwan (2003).
    Tay, K. W., “The Analysis and Design of Film Bulk Acoustic-Wave Resonators,” Doctoral Dissertation, Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan (2005).
    Tsai, L. F., “Study of the Growth of ZnO Thin Films by Plasma Enhance Chemical Vapor Deposition (PECVD) at Room Temperature,” Master Thesis in Chinese, Department of Optics Science, National Central University, Jhongli, Taiwan (2002).
    Tsai, Y. T., “A Study of O2 Plasma Treatment on RF Sputtered Barium Strontium Titanate Thin Films,” Master Thesis in Chinese, Department of Electronic Engineering, National Yunlin University of Science and Technology, Yunlin, Taiwan (2003).
    Wood, R. W. and Loomis, A. L., “The physical and biological effects of high-frequency sound- waves of great intensity,” Philosophical Magazine, Ser. 7, Vol. 4, No. 22, pp. 417-436 (1927).
    Xiao, H., Introduction to Semiconductor Manufacturing Technology, Prentice Hall, New Jersey (2001).
    Yoshino, Y., Ushimi, Y., Yamada, H., Takeuchi, M., “Ainc Oxide Piezoelectric Thin films for Bulk Acoustic Wave Resonators,” Murata Manufacturing Co., Ltd., Tenjin, Nagaoka-kyo, Kyoto, Japan (2003).
    Yan, Z., Zhou, X. Y., Pang, G. K. H., Zhang, T., Liu, W. L., Cheng, J. G., Song, Z. T., Feng, S. L., Lai, L. H., Chen, J. Z., and Wang, Y., “ZnO-Based Film Bulk Acoustic resonator For High Sensitivity Biosensor Applications,” Journal of Applied Physics Letters, Vol. 90, Issue 14, pp. 143503-1-143503-3 (2007).
    Zhou, Z. M., Piezoelectricity Mechanics, Chuan-Hwa Science & Technology Book Co., Ltd., Taipei, Taiwan (2003).
    Zhou, Q. F., Shung, K. K., and Huang, Y., “Improvement Electrical Properties of Sol-Gel Derived Lead Zirconate Titanate Thick Films for Ultrasonic Transducer Application,” Journal of Materials Science, Vol. 42, No. 12, pp. 4480-4484 (2007).
    Standards Committee of the IEEE Ultrasonics, Ferroelectrics, and Frequency Control Society, IEEE Standard on Piezoelectricity, The Institute of Electrical and Electronics Engineers, Inc., New York (1988).

    QR CODE
    :::