跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黃衍勝
Yan-sheng Huang
論文名稱: The antimagic graph with a generalization
指導教授: 林強
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 30
中文關鍵詞: 圖論反魔術
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 反魔術圖是圖形的一種標號,當我們找到一種標號方式使得圖形的所有點之和都不相同時,我們稱這種圖形是反魔術圖。
    在這篇論文中,第一章我們討論反魔術圖的一些基本定義,第二章證明路徑(path)與星林(star forest)的聯集,在每一分量(component)的邊數都大於等於3的情況下是反魔術圖,第三章討論更廣義的反魔術性質,也證明了環路(cycle),完全圖(complete),輪子(wheel),風箏(kite)都是廣義的反魔術圖。


    A graph G is called an antimagic graph if exists an edge labeling with labels 1,2,⋯,|E(G)| such that all vertex sums are distinct.
    In this paper, Section 1 is the introduction of antimagic graph. In Section 2, we prove that the union of a path and some stars is antimagic. Section 3 is the introduction of antimagic with a generalization, and we prove that cycles, complete graphs, wheels and kites are R-antimagic.

    Contents Abstract (in Chinese) i Abstract (in English) ii 誌謝 iii Contents iv 1 Introduction 1 2 Antimagicness of disconnected graphs 4 3 A generalization of antimagic graph 8 References 20

    [1]N. Alon, G. Kaplan, A. Lev, Y. Roditty and R. Yuster, Dense graphs are
    anti-magic, J. Graph Theory 47 (4) (2004) 297-309.
    [2] P.D. Chawathe and V. Krishna, Antimagic labeling of complete m-ary
    trees, Number theory and discrete mathematics (Chandigarh, 2000), 77-80,
    Trends Math., Birkhuser, Basel, 2002.
    [3] D.W. Cranston, Regular bipartite graphs are antimagic, J. Graph Theory
    60 (2009), 173-182.
    [4] J. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. 19
    (DS6) (2012) (the Fifteenth edition).
    [5] N. Harts eld and G. Ringel, Pearls in Graph Theory, Academic Press,
    Boston, 1990.
    [6] D. Hefetz, Antimagic graphs via the combinatorial nullstellensatz, J. Graph
    Theory 50 (2005) 263-272.
    [7] G. Kaplan, A. Lev and Y. Roditty, On zero-sum partitions and anti-magic
    trees, Discrete Math., 309 (2009) 2010-2014.
    [8] M.J. Lee, C. Lin and W.H. Tsai, On antimagic labeling for power of cycles.
    Ars Combin. 98 (2011), 161-165.
    [9] J.L. Shang, C. Lin and S.C. Liaw, On the antimagic labeling of star forests,
    to appear.
    [10] R. Sliva, Antimagic labeling graphs with a regular dominating subgraph.
    Inform. Process. Lett. 112 (2012), no. 21, 844-847.
    [11] M. Sonntag, Antimagic vertex-labelling of hypergraphs, Discrete Math. 247
    (2002) 187- 199.
    [12] T.M. Wang and C. Hsiao, On anti-magic labeling for graph products, Dis-
    crete Math. 308 (2008) 3624-3633.
    [13] T.M. Wang and M.J. Liu, Deming Some classes of disconnected antimagic
    graphs and their joins, Wuhan Univ. J. Nat. Sci. 17 (2012), no. 3, 195-199.
    [14] T. Wang, M.J. Liu and M.D. Li, A class of antimagic join graphs, Acta
    Math. Sin. 29 (2013), no. 5, 1019-1026.
    [15] T.M. Wang, Toroidal grids are anti-magic, Lecture Notes in Computer Sci-
    ence (LNCS) 3595 (2005) 671-679.

    QR CODE
    :::