跳到主要內容

簡易檢索 / 詳目顯示

研究生: 劉哲瑋
Jhe-Wei Liou
論文名稱: 氫化與氧化探針微影技術在石墨烯上產生缺陷的探討
Characterizations of defects in graphene through hydrogenation and oxidation scanning probe lithography
指導教授: 溫偉源
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 88
中文關鍵詞: 石墨烯缺陷掃描探針微影技術氫化氧化
外文關鍵詞: graphene, defect, scanning probe lithography, hydrogenation, oxidation
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 利用缺陷調控石磨烯的能帶結構在擴展石磨烯的電子元件應用上非常重要。其中氫化是石墨烯中有著最單純結構的缺陷,這使得氫化缺陷是可以被還原的。這有助於缺陷濃度與能帶結構的調控。製作電子元件的過程中,圖樣定義是必不可少的技術。其中偏壓式掃描探針微影技術(b-SPL)是一種無光阻的微影技術,可以直接局部改變石墨烯的特性。這減少了不必要的污染與並且能有更好的邊緣缺陷控制。除此之外,通過調整b-SPL的偏壓可以產生氧化或氫化石墨烯。在之前的研究中,b-SPL氧化石墨烯的缺陷與機制都被完整的探討。然而,利用b-SPL在石墨烯上產生的氫化缺陷卻沒有深入的研究與表徵。
    在本篇研究中,我們使用熱還原過程比較正負偏壓b-SPL在石墨烯上產生的缺陷的性質。X射線光電子能譜(XPS)與拉曼光譜分別探測了缺陷的化學組成與結構破壞程度。我們發現負偏壓b-SPL產生低濃度氧化與高比例的結構缺陷。而正偏壓b-SPL則產生氫化與較少的結構缺陷。局部的電阻量測更進一步證實正偏壓b-SPL產生氫化缺陷的可逆電性。本篇研究發現b-SPL的局部缺陷控制與精密的缺陷空間分布控制,使得b-SPL成為一個有潛力直接製作石墨烯元件的可靠技術。


    Hydrogenation was the simplest method to chemically modulate the band structure of graphene. It has been reported that hydrogenation on graphene was reversible in both lattice structure and electrical property. For further application, the nanofabrication technology for hydrogenation on graphene was needed. Bias-induced scanning probe lithography (b-SPL) is a resist-less tool that can locally modify graphene properties. In addition, it can locally oxidize or hydrogenate graphene by tuning the bias between graphene and the tip. In our previous work, the oxygen-related defects on graphene generated by b-SPL with negative tip bias have been well investigated. The b-SPL generated both structural defects and oxidation on graphene. However, the hydrogenation of graphene through the b-SPL is not fully explored.
    In this study, we compare the properties of defects produced on graphene by b-SPL using a thermal reduction process. x-ray photoelectron spectroscopy (XPS) and Raman spectroscopy were performed to investigate the chemical composition and structural damage, respectively. We found that negative b-SPL produced a low concentration of oxidation with a high proportion of structural defects. Positive b-SPL, on the other hand, produces hydrogenation and a lower density of structural defects. Local resistivity measurements further confirm the reversible electrical properties of the positive b-SPL to produce hydrogenated defects. This study concludes that the local defect control and precise defect spatial distribution control of b-SPL make b-SPL a promising and robust technique for the direct fabrication of graphene components.

    Contents 摘要 II Abstract III Contents V List of Figures VII Chapter 1 Introduction 1 Chapter 2 Background 4 2.1 Graphene 5 2.2 Atomic force microscope 13 2.2.1 Contact mode 16 2.2.2 Non-contact mode and tapping mode 17 2.2.3 Kelvin probe force microscopy 19 2.3 Scanning probe lithography 20 2.4 Raman spectroscopy 28 2.5 X-ray photoelectron spectroscopy 35 Chapter 3 Experiment 40 3.1 Sample preparation 41 3.1.1 Chemical vapor deposition growth of graphene 41 3.1.2 Graphene transfer 42 3.2 Scanning probe lithography 45 3.3 KPFM 47 3.4 Raman spectroscopy 48 3.5 SPEM 50 Chapter 4 Result and Discussion 52 4.1 Characterizations of SPL patterns 53 4.2 Reduction of SPL patterns by thermal annealing 61 Chapter 5 Conclusion 69 Reference 70

    1 Balandin, A. A. et al. Superior Thermal Conductivity of Single-Layer Graphene. Nano Letters 8, 902-907, doi:10.1021/nl0731872 (2008).
    2 Novoselov, K. S. et al. Electric Field Effect in Atomically Thin Carbon Films. Science 306, 666, doi:10.1126/science.1102896 (2004).
    3 Frank, I. W., Tanenbaum, D. M., van der Zande, A. M. & McEuen, P. L. Mechanical properties of suspended graphene sheets. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 25, 2558-2561, doi:10.1116/1.2789446 (2007).
    4 Bolotin, K. I. et al. Ultrahigh electron mobility in suspended graphene. Solid State Communications 146, 351-355, doi:https://doi.org/10.1016/j.ssc.2008.02.024 (2008).
    5 Haberer, D. et al. Tunable Band Gap in Hydrogenated Quasi-Free-Standing Graphene. Nano Letters 10, 3360-3366, doi:10.1021/nl101066m (2010).
    6 Gómez-Navarro, C. et al. Electronic Transport Properties of Individual Chemically Reduced Graphene Oxide Sheets. Nano Letters 7, 3499-3503, doi:10.1021/nl072090c (2007).
    7 Luo, Z., Vora, P. M., Mele, E. J., Johnson, A. T. C. & Kikkawa, J. M. Photoluminescence and band gap modulation in graphene oxide. Applied Physics Letters 94, 111909, doi:10.1063/1.3098358 (2009).
    8 Gómez-Navarro, C. et al. Atomic Structure of Reduced Graphene Oxide. Nano Letters 10, 1144-1148, doi:10.1021/nl9031617 (2010).
    9 Elias, D. C. et al. Control of Graphene's Properties by Reversible Hydrogenation: Evidence for Graphane. Science 323, 610, doi:10.1126/science.1167130 (2009).
    10 Gao, H., Wang, L., Zhao, J., Ding, F. & Lu, J. Band Gap Tuning of Hydrogenated Graphene: H Coverage and Configuration Dependence. The Journal of Physical Chemistry C 115, 3236-3242, doi:10.1021/jp1094454 (2011).
    11 Hong, J.-Y. & Jang, J. Micropatterning of graphene sheets: recent advances in techniques and applications. Journal of Materials Chemistry 22, 8179-8191, doi:10.1039/C2JM00102K (2012).
    12 Garcia, R., Knoll, A. W. & Riedo, E. Advanced scanning probe lithography. Nature Nanotechnology 9, 577-587, doi:10.1038/nnano.2014.157 (2014).
    13 Lin, Y.-C. et al. Graphene Annealing: How Clean Can It Be? Nano Letters 12, 414-419, doi:10.1021/nl203733r (2012).
    14 Moriki, T. et al. Electron transport in thin graphite films: Influence of microfabrication processes. Physica E: Low-dimensional Systems and Nanostructures 40, 241-244, doi:https://doi.org/10.1016/j.physe.2007.06.005 (2007).
    15 Masubuchi, S., Ono, M., Yoshida, K., Hirakawa, K. & Machida, T. Fabrication of graphene nanoribbon by local anodic oxidation lithography using atomic force microscope. Applied Physics Letters 94, 082107, doi:10.1063/1.3089693 (2009).
    16 Liu, H., Hoeppener, S. & Schubert, U. S. Nanoscale Materials Patterning by Local Electrochemical Lithography Advanced Engineering Materials 18, 890-902, doi:https://doi.org/10.1002/adem.201500486 (2016).
    17 Byun, I.-S. et al. Nanoscale Lithography on Monolayer Graphene Using Hydrogenation and Oxidation. ACS Nano 5, 6417-6424, doi:10.1021/nn201601m (2011).
    18 Arai, M., Masubuchi, S., Nose, K., Mitsuda, Y. & Machida, T. Fabrication of 10-nm-scale nanoconstrictions in graphene using atomic force microscopy-based local anodic oxidation lithography. Japanese Journal of Applied Physics 54, 04DJ06, doi:10.7567/jjap.54.04dj06 (2015).
    19 Masubuchi, S., Arai, M. & Machida, T. Atomic Force Microscopy Based Tunable Local Anodic Oxidation of Graphene. Nano Letters 11, 4542-4546, doi:10.1021/nl201448q (2011).
    20 Dago, A. I., Sangiao, S., Fernández-Pacheco, R., De Teresa, J. M. & Garcia, R. Chemical and structural analysis of sub-20 nm graphene patterns generated by scanning probe lithography. Carbon 129, 281-285, doi:https://doi.org/10.1016/j.carbon.2017.12.033 (2018).
    21 Hong, Y.-Z. et al. Local oxidation and reduction of graphene. Nanotechnology 28, 395704, doi:10.1088/1361-6528/aa802d (2017).
    22 Wang, Y.-H. et al. Roles of structural and chemical defects in graphene on quenching of nearby fluorophores. Carbon 165, 412-420, doi:https://doi.org/10.1016/j.carbon.2020.04.067 (2020).
    23 Liou, J.-W. & Woon, W.-Y. Revisiting Oxidation Scanning Probe Lithography of Graphene: Balance of Water Condensation Energy and Electrostatic Energy. The Journal of Physical Chemistry C 123, 25422-25427, doi:10.1021/acs.jpcc.9b04175 (2019).
    24 Whitener, K. E., Lee, W. K., Campbell, P. M., Robinson, J. T. & Sheehan, P. E. Chemical hydrogenation of single-layer graphene enables completely reversible removal of electrical conductivity. Carbon 72, 348-353, doi:https://doi.org/10.1016/j.carbon.2014.02.022 (2014).
    25 Konschuh, S., Gmitra, M. & Fabian, J. Tight-binding theory of the spin-orbit coupling in graphene. Physical Review B 82, 245412, doi:10.1103/PhysRevB.82.245412 (2010).
    26 Larciprete, R. et al. Dual Path Mechanism in the Thermal Reduction of Graphene Oxide. Journal of the American Chemical Society 133, 17315-17321, doi:10.1021/ja205168x (2011).
    27 Larciprete, R., Lacovig, P., Gardonio, S., Baraldi, A. & Lizzit, S. Atomic Oxygen on Graphite: Chemical Characterization and Thermal Reduction. The Journal of Physical Chemistry C 116, 9900-9908, doi:10.1021/jp2098153 (2012).
    28 Leenaerts, O., Peelaers, H., Hernández-Nieves, A. D., Partoens, B. & Peeters, F. M. First-principles investigation of graphene fluoride and graphane. Physical Review B 82, 195436, doi:10.1103/PhysRevB.82.195436 (2010).
    29 Lin, C. et al. Direct Observation of Ordered Configurations of Hydrogen Adatoms on Graphene. Nano Letters 15, 903-908, doi:10.1021/nl503635x (2015).
    30 Gómez-Moñivas, S., Sáenz, J. J., Calleja, M. & García, R. Field-Induced Formation of Nanometer-Sized Water Bridges. Physical Review Letters 91, 056101, doi:10.1103/PhysRevLett.91.056101 (2003).
    31 Wei, Z. & Zhao, Y.-P. Growth of liquid bridge in AFM. Journal of Physics D: Applied Physics 40, 4368-4375, doi:10.1088/0022-3727/40/14/036 (2007).
    32 Cramer, T., Zerbetto, F. & García, R. Molecular Mechanism of Water Bridge Buildup: Field-Induced Formation of Nanoscale Menisci. Langmuir 24, 6116-6120, doi:10.1021/la800220r (2008).
    33 Li, H. et al. Electrode-Free Anodic Oxidation Nanolithography of Low-Dimensional Materials. Nano Letters 18, 8011-8015, doi:10.1021/acs.nanolett.8b04166 (2018).
    34 Lucchese, M. M. et al. Quantifying ion-induced defects and Raman relaxation length in graphene. Carbon 48, 1592-1597, doi:https://doi.org/10.1016/j.carbon.2009.12.057 (2010).
    35 Eckmann, A., Felten, A., Verzhbitskiy, I., Davey, R. & Casiraghi, C. Raman study on defective graphene: Effect of the excitation energy, type, and amount of defects. Physical Review B 88, 035426, doi:10.1103/PhysRevB.88.035426 (2013).
    36 Malard, L. M., Pimenta, M. A., Dresselhaus, G. & Dresselhaus, M. S. Raman spectroscopy in graphene. Physics Reports 473, 51-87, doi:https://doi.org/10.1016/j.physrep.2009.02.003 (2009).
    37 Reinert, F. & Hüfner, S. Photoemission spectroscopy—from early days to recent applications. New Journal of Physics 7, 97 (2005).
    38 Hong, I. H. et al. Performance of the SRRC scanning photoelectron microscope. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 467-468, 905-908, doi:https://doi.org/10.1016/S0168-9002(01)00516-2 (2001).
    39 Chusuei, C. C. & Goodman, D. W. in Encyclopedia of Physical Science and Technology (Third Edition) (ed Robert A. Meyers) 921-938 (Academic Press, 2003).
    40 Johansson, A. et al. Chemical composition of two-photon oxidized graphene. Carbon 115, 77-82, doi:https://doi.org/10.1016/j.carbon.2016.12.091 (2017).
    41 Kim, S. et al. Rewritable ghost floating gates by tunnelling triboelectrification for two-dimensional electronics. Nature Communications 8, 15891, doi:10.1038/ncomms15891 (2017).
    42 Claramunt, S. et al. The Importance of Interbands on the Interpretation of the Raman Spectrum of Graphene Oxide. The Journal of Physical Chemistry C 119, 10123-10129, doi:10.1021/acs.jpcc.5b01590 (2015).

    QR CODE
    :::