跳到主要內容

簡易檢索 / 詳目顯示

研究生: 錢雅芳
Ya-Fang Chien
論文名稱: 相關性交易及信用違約交換價差
Correlation Trading and Credit Default Swap Spread
指導教授: 史綱
Gang Shyy
口試委員:
學位類別: 碩士
Master
系所名稱: 管理學院 - 財務金融學系
Department of Finance
畢業學年度: 94
語文別: 英文
論文頁數: 48
中文關鍵詞: 縮減式模型信用違約交換相關性公司債券信用風險溢酬
外文關鍵詞: Reduced form, Credit default swap, Coporate bond, Credit spread, Correlation
相關次數: 點閱:24下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在過去的文獻中,信用違約交換價值訂價決定於違約機率以及回復率。很多實證研究證實違約機率以及回復率無法完全解釋信用違約交換的市場價格,亦即,這兩個解釋因子對信用違約交換市價的解釋能力有限。故許多實證研究嘗試用不同的解釋因子〈如:債券流動性、總體因子〉來解釋殘差的部分,然而,實證的結果並不顯著。
    信用違約交換可以被包裝成合成式的擔保債務憑證或者做為規避信用風險之用途。近年來,許多投資者以及交易者會以信用違約交換或者擔保債務憑證分層並根據自己對於各別信用違約交換相關性的投資看法做交易。所以,我們認為相關性可能是影響信用違約交換的一個重要因子。故在本研究中,我們利用公司債券導出理論的信用違約交換的價格,並且我們也發現理論價與實際市場價格的確存在顯著性的差距。我們進一步利用相關性做為解釋因子來解釋理論以及實際市場價格的差距,以證實我們的假設〈信用違約交換除了受違約機率以及回復率影響外,也受相關性影響,所以相關性可以解釋價差〉。最後,我們的結果支持最初的假設,結果顯著。


    In theoretical pricing model, credit default swap value is dominated by two factors: default
    probability and recovery rate. In many empirical researches, these two factors can not determine
    credit spread changes. These variables have rather limited explanatory power. There are lots
    studies try to use other variables (i.e. bond illiquidity, macroeconomic factors) to explain the residuals; however, the results do not significant.
    Credit default swaps can used to pack a synthetic CDO (Collateralized Debt Obligation).
    Recently, many investors and traders will trade CDS or CDO tranches by their view on correlation.
    Therefore, we consider correlation can be a factor to affect CDS spread. In this paper, we
    use corporate bond to derive model CDS spread. Compared with market CDS spread, model
    CDS spread is significant different from market CDS spread. Our result suggests that the pricing
    difference comes from correlations among CDSs.

    1 Introduction 1 2 Correlation Trading 3 2.1 Credit Derivatives introduction 3 2.2 Using a contract to explain the transaction of CDS 4 2.3 Correlation Definition 6 2.4 Correlation Trading 6 3 Data 7 3.1 Data Description 7 3.2 The Criteria of Bond Data 7 4 Methodology 9 4.1 Structure form and Reduced form 10 4.2 Credit Default Swaps Pricing Model 11 4.3 The bond price and CDS Model with CIR 12 4.4 Method of parameters estimated and the model-implied CDS premium 14 4.5 Results 16 5 Empirical test: Cross sectional test in Reduced Form 18 6 Empirical test: Panel test in Reduced Form 21 7 Empirical test in Structural Form 22 8 Conclusion 24 9 Reference 25

    [1] Adelson and Whetten (2004). CDOs in Plain English. Nomura Securities International,Inc.
    [2] Angammana, Rajan, and Kumar (2001). A primer on default swaps in Emerging markets Salmon Smith Barney
    [3] Bodie, Kan, and Marcus (2001). Essentials of Investments, McGRAW-HILL, Fourth Edition.
    [4] Duffie (1998). Defaultable Term Structure Models with Fractional Recovery of Par.
    [5] Duffie, Darrell, and Kenneth J. Singleton (1999). Modeling Term Structures of Defaultable Bonds. Review of Financial Studies, Vol. 12, 687-720.
    [6] Duffie, Pan, and Singleton (1999). Transform analysis and asset pricing for affine jumpdiffusions. National Bureau of Economic research.
    [7] Jarrow (2005). Estimating default correlations using a reduced-form model.
    [8] Jarrow, R.A., D. Lando, and S. Turnbull (1997). A Markov Model for the Term Structure of Credit Spreads. Review of Financial Studies, Vol. 10, 481-523.
    [9] Jarrow, Robert A. and Stuart M. Turnbull. Pricing Derivatives on Financial Securities Subject to Credit Risk. Journal of Finance, Vol. 1, 53-85.
    [10] Kakodkar, Martin, and Galiani (2003). Correlation Trading. Merrill Lynch Global Securities Research & Economics Group.
    [11] Lando, David (1998). On Cox Processes and Credit Risky Securities. Review of Derivatives Research, Vol. 2, 99-120.
    [12] Longstaff, Mithal, and Neis (2003). The credit-default swap market: Is credit protection priced correctly? Working paper, UCLA.
    [13] Longstaff, Mithal, and Neis (2005). Corporate yield spreads: Default risk or Liquidity? New Evidence from the credit-default swaps market. Journal of Finance, Vol. 60, 2213-2253.33
    [14] Lucas, D. J. (1995). Default Correlation and Credit Analysis. Journal of Fixed Income,March, 76-87.
    [15] Mithal (2002). Single-Name Credit Default Swaps: A users guide.
    [16] Morsalani (2005). Correlation Trading: Facts and Challenges.
    [17] Prins, Toft, Calamaro, Kaye, and Yoong (2001). Unwind valuation of credit default swaps,Goldman Sachs.
    [18] Richard Martin (2004). Credit Portfolio Modeling Handbook. First Boston.
    [19] Whetten, Adelson, and Bemmelen (2004). Credit Default Swap (CDS) Primer. Nomura Securities International, Inc.
    [20] Whetten and Adelson (2004). Correlation Primer. Nomura Securities International, Inc.
    [21] Whetten and Adelson (2004). The Bespoke-A guide to Single-Tranche Synthetic CDOs.Nomura Securities International, Inc.
    [22] Zhou, C., (1997). A Jump-Diffusion Approach to Modeling Credit Risk and Valuing Defaultable Securities. Finance and Economics Discussion Series (1997-15), The Federal Reserve Board.
    [23] 林淑瑛 (2004). 信用衍生性金融商品之研究: CB Asset Swap及CDO, 國立中央大學財務金融研究所博士論文
    [24] 陳松男 (2005). 結構型金融商品之設計及創新 (一), 新陸書局,第一版
    [25] 陳松男 (2005). 初階金融工程學與Matlab、C++電算應用, 新陸書局,第一版
    [26] 陳松男 (2005). 利率金融工程學: 理論模型及實務應用, 新陸書局,第一版
    [27] 廖四郎 (2003). 信用衍生性金融商品簡介
    [28] 廖四郎,李福慶 (2005). 擔保債權憑證之評價-Copula 分析法. 台灣金融季刊, 第六輯第二期, 53-84
    [29] 廖植文 (2002). 信用價差期間結構與違約風險之評價 國立台灣大學財務金融研究所碩士論文
    [30] 儲蓉 (2005). 進入信用衍生性金融商品殿堂 台灣金融研訓院

    QR CODE
    :::