| 研究生: |
馮怡蓁 Yi-Jhen Feng |
|---|---|
| 論文名稱: |
含二氧化鈦中孔洞材料之製備、鑑定及催化應用 Preparation, Characterization and Catalytic Applications of Titanium-containing Mesoporous Materials |
| 指導教授: |
高憲明
Hsien-Ming Kao 簡淑華 Shu-Hua Chien |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | 二氧化鈦 、二氧化碳還原反應 、水楊酸降解反應 、一氧化碳氧化反應 、SBA-15 |
| 外文關鍵詞: | photodegradation of salicylic acid and CO oxidat, SBA-15, TiO2, photoreduction od CO2 |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究製備具高表面積之中孔洞分子篩SBA-15 再嫁接二氧化鈦
薄膜, 製得具有高表面積之光觸媒材料。藉由摻入光敏劑
(2,9-dichloroquinacridone, DCQ)作為可見光的光觸媒,或負載貴重金
屬提升觸媒之活性。本研究製得之觸媒可運用於能源及環保技術上,
其中,光催化還原二氧化碳生成甲醇之反應可運用在溫室效應氣體減
量及新能源開發,水楊酸光降解反應以及一氧化碳氧化反應,可作為
環境之污染物之控制技術。
我們以不同種類模板劑製得兩種不同孔道型態的分子篩─以
P123 製備SBA-15 及以P123、SDS、C16TMAB 製備具垂直孔道之
vc-SBA-15。再以四丁基鈦為鈦源利用迴流嫁接法製得TiO2/SBA-15
及TiO2/vc-SBA-15。由HRTEM 照片顯示SBA-15、vc-SBA-15 皆具
有整齊的孔洞結構,但相較於SBA-15,vc-SBA-15 的孔道垂直且較
短。XRD 結果顯示SBA-15 及vc-SBA-15 均具有(100)之特徵繞射峰,
為典型二維六角結構;嫁接二氧化鈦後,分子篩TiO2/SBA-15 及TiO2/
vc-SBA-15 在形貌以及結構並無明顯改變。由氮氣等溫吸附測得
SBA-15、vc-SBA-15 之表面積分別為725 及797 m2/g,嫁接二氧化鈦
後,TiO2/SBA-15 及TiO2/vc-SBA-15 之表面積下降為573 及584 m2/g。
由UV-Vis 圖譜顯示波長在低於380 nm 有明顯吸收,表示二氧化鈦
成功嫁接於SBA-15 及vc-SBA-15 擔體表面。紫外光 (400 W Halide
lamp) 光催化還原水中二氧化碳之結果顯示,具有垂直孔道的
TiO2/vc-SBA-15 具有較佳的光催化活性,在NaHCO3 (pH = 3) 的溶液
中照光48 hr 的甲醇產率可達到11.5μmole/g-cat.•hr。
摻入DCQ 的觸媒在波長500-600 nm 有明顯可見光吸收。經TGA
求得DCQ/TiO2/SBA-15 及DCQ/TiO2/vc-SBA-15 的DCQ含量約為2.0wt%及4.6 wt%。以可見光 (100 W Halogen lamp) 光催化還原水中二
氧化碳之結果顯示,具有垂直孔道的DCQ/TiO2/vc-SBA-15 具有較佳
的光催化活性,在NaHCO3(pH = 3)的溶液中照光48 hr 的甲醇產率可
達到0.44μmole/g-cat.•hr。
以光化學沉積法製備以含二氧化鈦中孔分子篩為擔體之鉑、銠及
鉑-銠觸媒。HRTEM 照片顯示各觸媒之顆粒大小約2-5 nm 且均勻分
布在各分子篩擔體上。XRD 結果顯示負載鉑、銠後,並未影響分子
篩之結構。紫外光光催化水中二氧化碳還原反應的結果顯示,擔體
鉑、銠及鉑-銠觸媒對光催化還原水中的二氧化碳均有相當好的反應
活性,其中以Pt/TiO2/SBA-15 的光催化活性最佳,在NaHCO3 (pH = 3)
的溶液中照光48 hr 的甲醇產率可達到40 μmole/g-cat.•hr,相較於未
負載鉑之觸媒其活性提升了三倍。在水楊酸光催化降解反應中,觸媒
的光降解活性為:鉑觸媒 > 鉑-銠觸媒 > 銠觸媒。在一氧化碳氧化
反應結果顯示,相較於TiO2/SBA-15,具有垂直孔道之TiO2/vc-SBA-15
有較佳轉換效率;且鉑-銠觸媒 > 銠觸媒 > 鉑觸媒。
In this study, TiO2 photocatalyst materials with high surface area
were prepared by grafting a TiO2 thin layer onto SBA-15. Photosentisizer
(2,9-dichloro quinacridone, DCQ) is impregnated to extend
their use of visible light. And metal nanoparticles are immobilized to
promote their photocatalytic activities. These prepared catalysts were
employed in photocatalytic reduction of CO2 for mitigating the
greenhouse gas effect and serving as a new energy source.
We used P123 surfactant as a template to prepare conventional
SBA-15, and used ternary surfactants (C16TMAB/SDS/P123) to prepare
vc-SBA-15 with vertical nanochannels. TiO2/SBA-15 and TiO2/vc-
SBA-15 were prepared by grafting a thin layer of TiO2 onto SBA-15 and
vc-SBA-15 with TBOT as Ti source. HRTEM images showed that
vc-SBA-15 had short and face-up nanochannels, which was extremely
different from SBA-15 of longer parallel channels. The XRD patterns
of SBA-15 and vc-SBA-15 exhibited a characteristic (100) peak,
indicating that they were of highly ordered hexagonal structures. After
grafting with TiO2, there were no significant changes in the morphology
and structure. Meanwhile, the surface area of SBA-15 was decreased
from 725 m2/g to 573 m2/g, and that of vc-SBA-15 was also decreased
from 797 m2/g to 584 m2/g as determined by N2 sorption isotherms.
UV-Visible spectrum showed that a strong absorption band occurred at
the wavelength less than 380 nm, indicating that TiO2 was successfully
grafted onto the mesoporous silica. Photosensitizer DCQ was then
introduced in order to facilitate the TiO2-containing catalysts to extend
the use of visible light. As shown by UV-Visible spectrum, the obtained
catalysts had obvious absorption ranged from 500 to 600 nm. The DCQ
uptake of DCQ/TiO2/SBA-15 and DCQ/TiO2/vc-SBA-15 were 2.0 wt% and 4.6 wt%, respectively, as estimated by TGA. The photoreduction of
CO2 was conducted in NaHCO3(aq) under visible and UV light
illumination. As a result of the short and face-up nanochannels that
permits the higher accessibility for the reactants, the methanol yield of
vc-SBA-15 supported photocatalysts were much higher than those of
SBA-15 supported ones. The methanol yield of DCQ/TiO2/vc-SBA-15
was 0.44 μmole/g-cat./hr under visible light irradiation, whereas that of
TiO2/vc-SBA was 11.5 μmole/g-cat./hr under UV irradiation.
Platinum and/or rhodium nanoparticles were immobilized on the
TiO2/SBA-15 and TiO2/vc-SBA-15 by photochemical deposition method.
The metal particle size of the prepared catalysts were about 2 - 5 nm as
observed by HRTEM. The catalytic activities of were evaluated by
photoreduction of CO2, photodegradation of salicylic acid and CO
oxidation. For photocatalytic reduction of CO2, it was found that the
methanol of TiO2-containing catalysts can be substantially enhanced by
metal modification. For photodegradation of salicylic acid, the activities
were in the order: Pt > Pt-Rh > Rh. For CO oxidation, it was found that
the activity of TiO2/vc-SBA-15 was higher than TiO2/SBA-15. The
catalytic activities of catalysts supported the metal for CO oxidation were
in the order: Pt-Rh > Rh > Pt.
[1] Fujishima, A.; Honda, K. “Electrochemical photolysis of water at a semiconductor electrode.” Nature [London, United Kingdom] 1972, 238, 37-38.
[2] Goeringer, S.; Chenthamarakshan, C. R.; Rajeshwar, K. “Synergistic photocatalysis mediated by TiO2: mutual rate enhancement in the photoreduction of Cr (VI) and Cu(II) in aqueous media.” Electrochemistry Communications 2001, 3, 290-292.
[3] Wu, C.; Tzeng, L.; Kuo, Y.; Shu, C. H. “Enhancement of the photocatalytic activity of TiO2 film via surface modification of the substrate.” Applied Catalysis, A: General 2002, 226, 199-211.
[4] Graetzel, M.; “Energy Resources through Photochemistry and Catalysis.” New York, 1983, 573.
[5] Fujishima, A.; Rao, T. N.; Tryk, D. A. “TiO2 photocatalysts and diamond electrodes.” Electrochimica Acta 2000, 45, 4683-4690.
[6] Diebold, U. “The surface science of titanium dioxide.” Surface Science Reports. 2003, 48, 53-229.
[7] 垰田博史著,張晶、楊健譯 光觸媒圖解, 2003.
[8] “Anonymous In Phase Diagrams for Ceramists Figure” The American Ceramic Society, Inc. 1975, 76, 4150.
[9] Yamashita, H.; Nishiguchi, H.; Kamada, N.; Anpo, M.; Teraoka, Y.; Hatano, H.; Ehara, S.; Kikui, K.; Palmisano, L.; et al “Photocatalytic reduction of CO2 with H2O on TiO2 and Cu/TiO2 catalysts.” Research on Chemical Intermediates 1994, 20, 815-823.
[10] Bard, A. J.; In Integrated Chemical Systems; John Wiley & Sons, Inc. New York, 1994, 279.
[11] Linsebigler, A. L.; Lu, G.; Yates, J. T. Jr “Photocatalysis on TiO2 Surfaces:Principles, Mechanisms, and Selected Results.” Chemical Reviews [Washington, D.C.] 1995, 95, 735-758.
[12] Zhang, Z.; Wang, C.; Zakaria, R.; Ying, J. Y. “Role of Particle Size in Nano crystalline TiO2-Based Photocatalysts.” Journal of Physical Chmistry B 1998, 102, 10871-10878.
[13] Inoue, T.; Fujishima, A.; Konishi, S.; Honda, K. “Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders.” Nature (London, United Kingdom) 1979, 277, 637-638.
[14] Hori, H.; Ishitani, O.; Koike, K.; Johnson, F. P. A.; Ibusuki, T. “Efficient carbon dioxide photoreduction by novel metal complexes and its reaction mechanisms.” Energy Conversion and Management 1995, 36, 621-624.
[15] Serpone, N.; Lawless, D.; Khairutdinov, R. “Size Effects on the Photophysical Properties of Colloidal Anatase TiO2 Particles:Size Quantization versus Direct Transitions in This Indirect Semiconductor.” Journal of Physical Chmistry 1995, 99, 16646-16654.
[16] Zhang, Z.; Wang, C.; Zakaria, R.; Ying, J. Y. “Role of Particle Size in Nanocrystalline TiO2-Based Photocatalysts.” Journal of Physical Chmistry B 1998, 102, 10871-10878.
[17] Song, K. Y.; Kwon, Y. T.; Choi, G. J.; Lee, W. I. “Photocatalytic activity of Cu/TiO2 with oxidation state of surface-loaded copper.” Bulletin of the Korean Chemical Society 1999, 20, 957-960.
[18] Yamamura, S.; Kojima, H.; Iyoda, J.; Kawai, W. “Formation of Ethyl-Alcohol in the Photocatalytic Reduction of Carbon-Dioxide by SiC and ZnSe Metal Powders.” Journal of Electroanalytical Chemistry 1987, 225, 287-290.
[19] Inoue, H.; Moriwaki, H.; Maeda, K.; Yoneyama, H. “Photoreduction of carbon dioxide using chalcogenide semiconductor microcrystals.” Journal of Photochemistry and Photobiology, A : Chemistry 1995, 86, 191-196.
[20] Sugawa, S.; Sayama, K.; Okabe, K.; Arakawa, H. “Methanol synthesis from CO2 and H2 over silver catalyst.” Energy Conversion and Management 1995, 36, 665-668.
[21] Yamashita, H.; Fujii, Y.; Ichihashi, Y.; Zhang, S. G.; Ikeue, K.; Park, D. R.; Koyano, K.; Tatsumi, T.; Anpo, M. “Selective formation of CH3OH in the photocatalytic reduction of CO2 with H2O on titanium oxides highly dispersed within zeolites and mesoporous molecular sieves.” Catalysis Today 1998, 45, 221-227.
[22] Kohno, Y.; Hayashi, H.; Takenaka, S.; Tanaka, T.; Funabiki, T.; Yoshida, S. “Photoenhanced reduction of carbon dioxide with hydrogen over Rh/TiO2.” Journal of Photochemistry and Photobiology, A: Chemistry 1999, 126, 117-123.
[23] Ichikawa, S. “Chemical conversion of carbon dioxide by catalytic hydrogenation and room temperature photoelectrocatalysis.” Energy Conversion and Management 1995, 36, 613-616.
[24] Henglein, A.; Gutierrez, M.; Fischer, C. H. “Photochemistry of colloidal metal sulfides Kinetics of interfacial reactions at zinc sulfide particles.” Berichte der Bunsen-Gesellschaft 1984, 88, 170-175.
[25] Liu, B.; Torimoto, T.; Matsumoto, H.; Yoneyama, H. “Effect of solvents on photocatalytic reduction of carbon dioxide using TiO2 nanocrystal photocatalyst embedded in SiO2 matrixes.” Journal of Photochemistry and Photobiology, A: Chemistry 1997, 108, 187-192.
[26] Yoneyama, H. “Photoreduction of carbon dioxide on quantized semiconductor nanoparticles in solution.” Catalysis Today 1997, 39, 169-175.
[27] Choi, W.; Termin, A.; Hoffmann, M. R. “The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics.” Journal of Physical Chmistry 1994, 98, 13669-13679.
[28] Wilke, K.; Breuer, H. D. “The influence of transition metal doping on the physical and photocatalytic properties of titania.” Journal of Photochemistry and Photobiology, A: Chemistry 1999, 121, 49-53.
[29] Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. “Visible-light photocatalysis in nitrogen-doped titanium oxides.” Science [Washington, DC, United States] 2001, 293, 269-271.
[30] Lobedank, J.; Bellmann, E.; Bendig, J. “Sensitized photocatalytic oxidation of herbicides using natural sunlight.” Journal of Photochemistry and Photobiology, A : Chemistry 1997, 108, 89-93.
[31] Nasr, C.; Vinodgopal, K.; Fisher, L.; Hotchandani, S.; Chattopadhyay, A. K.; Kamat, P. V. "Environmental Photochemistry on Semiconductor Surfaces. “Visible Light Induced Degradation of a Textile Diazo Dye, Naphthol Blue Black, on TiO2 Nanoparticles.” Journal of Physical Chmistry 1996, 100, 8436-8442.
[32] Zhao, D.; Huo, Q.; Feng, J.; Chmelka, B. F.; Stucky, G. D. “Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures.” Journal of the American Chemical Society 1998, 120, 6024-6036.
[33] Herrmann, J. M.; Mansot, J. L. “Analytical TEM study of the selective photocatalytic deposition of platinum on titania-silica mixtures and silica supported titania.” Journal of Catalysis 1990, 121, 340-348.
[34] Augugliaro, V.; Loddo, V.; Marci, G.; Palmisano, L.; Lopez-Munoz, M. J. “Photocatalytic oxidation of cyanides in aqueous titanium dioxide suspensions.” Journal of Catalysis 1997, 166, 272-283.
[35] Herrmann, J. .; Tahiri, H.; Guillard, C.; Pichat, P. “Photocatalytic degradation of aqueous hydroxybutanedioic acid [malic acid] in contact with powdered and supported titania in water.” Catalysis Today 1999, 54, 131-141.
[36] Romeas, V.; Pichat, P.; Guillard, C.; Chopin, T.; Lehaut, C. “Testing the Efficacy and the Potential Effect on Indoor Air Quality of a Transparent Self-Cleaning TiO2-Coated Glass through the Degradation of a Fluoranthene Layer.” Industrical & Engineering Chemistry Research 1999, 38, 3878-3885.
[37] Lassaletta, G.; Fernandez, A.; Espinos, J. P.; Gonzalez-Elipe, A. R. “Spectroscopic characterization of quantum-sized TiO2 supported on silica: influence of size and TiO2-SiO2 interface composition.” Journal of Physical Chmistry 1995, 99, 1484-1490.
[38] Zhe, D.; Hu, X.; Yue, P. L.; Lu, G. Q.; Greenfield, P. F. “Synthesis of anatase TiO2 supported on porous solids by chemical vapor deposition.” Catalysis Today 2001, 68, 173-182.
[39] Davis, R. J. “Synthesis and characterization of VPI-5-supported titania clusters.” Chemistry of Materials 1992, 4, 1410-1415.
[40] Xu, Y.; Langford, C. H. “Photoactivity of Titanium Dioxide Supported on MCM41, Zeolite X, and Zeolite Y.” Journal of Physical Chmistry B 1997, 101, 3115-3121.
[41] Yamashita, H.; Fujii, Y.; Ichihashi, Y.; Zhang, S. G.; Ikeue, K.; Park, D. R.; Koyano, K.; Tatsumi, T.; Anpo, M. “Selective formation of CH3OH in the photocatalytic reduction of CO2 with H2O on titanium oxides highly dispersed within zeolites and mesoporous molecular sieves.” Catalysis Today 1998, 45, 221-227.
[42] Aronson, B. J.; Blanford, C. F.; Stein, A. “Solution-Phase Grafting of Titanium Dioxide onto the Pore Surface of Mesoporous Silicates: Synthesis and Structural Characterization.” Chemistry of Materials 1997, 9, 2842-2851.
[43] Sakata, T.; Kawai, T. “Photosynthesis and photocatalysis with semiconductor powders.” Energy Resources through Photochemistry and Catalysis. 1983, 331-358.
[44] Ibusuki, T.; Takeuchi, K. “Removal of low concentration nitrogen oxides through photoassisted heterogeneous catalysis.” Journal of Molecular Catalysis 1994, 88, 93-102.
[45] Takeda, N.; Torimoto, T.; Sampath, S.; Kuwabata, S.; Yoneyama, H. “Effect of Inert Supports for Titanium Dioxide Loading on Enhancement of Photodecomposition Rate of Gaseous Propionaldehyde."Journal of Physical Chmistry 1995, 99, 9986-9991.
[46] Chien, S.; Kuo, M.; Lu, C.; Lu, K. “Spectroscopic studies of NO reduction on Pt/TiO2 catalysts.” Catalysis Today 2004, 97, 121-127.
[47] Ward, W. J. III; Le Blanc, O. H.,Jr “Rayleigh-Benard convection in an electrochemical redox cell.” Science (Washington, DC, United States) 1984, 225, 1471-1473.
[48] Ying, J. Y.; Mehnert, C. P.; Wong, M. S. “Synthesis and applications of supramolecular-templated mesoporous materials.” Angewandte Chemie, International Edition 1999, 38, 56-77.
[49] Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S. “Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism.” Nature (London, United Kingdom) 1992, 359, 710-712.
[50] Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T. W.; Olson, D. H.; Sheppard, E. W.; et al “A new family of mesoporous molecular sieves prepared with liquid crystal templates.” Journal of the American Chemical Society 1992, 114, 10834-10843.
[51] Hartmann, M.; Poeppl, A.; Kevan, L. “Ethylene Dimerization and Butene Isomerization in Nickel-Containing MCM-41 and Al/MCM-41 Mesoporous Molecular Sieves: An Electron Spin Resonance and Gas Chromatography Study.” Journal of Physical Chmistry 1996, 100, 9906-9910.
[52] Chakraborty, B.; Pulikottil, A. C.; Viswanathan, B. “Alkylation of naphthalene with alcohols over mesoporous MCM-41.” Catalysis Letters 1996, 39, 63-65.
[53] Wu, C. G.; Bein, T. “Conducting polyaniline filaments in a mesoporous channel host.” Science (Washington, DC, United States) 1994, 264, 1757-9.
[54] Wu, C.; Bein, T. “Conducting carbon wires in ordered, nanometer-sized channels.” Science (Washington, D.C.) 1994, 266, 1013-1015.
[55] Lee, Y. S.; Surjadi, D.; Rathman, J. F. “Effects of Aluminate and Silicate on the Structure of Quaternary Ammonium Surfactant Aggregates.” Langmuir 1996, 12, 6202-6210.
[56] Tsang, S. C.; Davis, J. J.; Green, M. L. H.; Hill, H. A. O.; Leung, Y. C.; Sadler, P. J. “Immobilization of small proteins in carbon nanotubes: high-resolution transmission electron microscopy study and catalytic activity.” Journal of the Chemical Society, Chemical Communications 1995, 1803-1804.
[57] Neumann, R.; Khenkin, A. M. “Vanadium-substituted MCM-41 zeolites as catalysts for oxidation of alkanes with peroxides.” Chemical Communications (Cambridge) 1996, 2643-2644.
[58] Corma, A.; Navarro, M. T.; Perez-Pariente, J.; Sanchez, F. “Preparation and properties of Ti-containing MCM-41.” Studies in Surface Science and Catalysis 1994, 84, 69-75.
[59] Vartuli, J. C.; Schmitt, K. D.; Kresge, C. T.; Roth, W. J.; Leonowicz, M. E.; McCullen, S. B.; Hellring, S. D.; Beck, J. S.; Schlenker, J. L.; et al “Effect of Surfactant/Silica Molar Ratios on the Formation of Mesoporous Molecular Sieves: Inorganic Mimicry of Surfactant Liquid-Crystal Phases and Mechanistic Implications.” Chemistry of Materials 1994, 6, 2317-2326.
[60] Vartuli, J. C.; Kresge, C. T.; Roth, W. J.; McCullen, S. B.; Beck, J. S.; Schmitt, K. D.; Leonowicz, M. E.; Lutner, J. D.; Sheppard, E. W. “Designed synthesis of mesopore molecular sieve systems using surfactant directing agents.” Preprints - American Chemical Society, Division of Petroleum Chemistry 1995, 40, 21-25.
[61] Vartuli, J. C.; Kresge, C. T.; Roth, W. J.; McCullen, S. B.; Beck, J. S.; Schmitt, K. D.; Leonowicz, M. E.; Lutner, J. D.; Sheppard, E. W. “Designed synthesis of mesoporous molecular sieve systems using surfactant-directing agents.” Advanced Catalysts and Nanostructured Materials 1996, 1-19.
[62] Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Frederickson, G. H.; Chmelka, B. F.; Stucky, G. D. “Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores.” Science (Washington, D.C.) 1998, 279, 548-552.
[63] Soler-Illia, G. J. d. A. A.; Crepaldi, E. L.; Grosso, D.; Sanchez, C. “Block copolymer-templated mesoporous oxides.” Current Opinion in Colloid & Interface Science 2003, 8, 109-126.
[64] Imperor-Clerc, M.; Davidson, P.; Davidson, A. “Existence of a microporous corona around the mesopores of silica-based SBA-15 materials templated by triblock copolymers.” Journal of the American Chemical Society 2000, 122, 11925-11933.
[65] Zhao, D.; Yang, P.; Chmelka, B. F.; Stucky, G. D. “Multiphase Assembly of Mesoporous-Macroporous Membranes.” Chemistry of Materials 1999, 11, 1174-1178.
[66] Lin, H.; Cheng, Y.; Mou, C. “Hierarchical Order in Hollow Spheres of Mesoporous Silicates.” Chemistry of Materials 1998, 10, 3772-3776.
[67] Lin, H.; Mou, C. “Tubules-within-a-tubule hierarchical order of mesoporous molecular sieves in MCM-41.” Science (Washington, D.C.) 1996, 273, 765-768.
[68] Shio, S.; Kimura, A.; Yamaguchi, M.; Yoshida, K.; Kuroda, K. “Morphological control of ordered mesoporous silica: formation of fine and rod-like mesoporous powders from completely dissolved aqueous solutions of sodium metasilicate and cationic surfactants.” Chemical Communications (Cambridge) 1998, 2461-2462.
[69] Zhao, D.; Sun, J.; Li, Q.; Stucky, G. D. “Morphological Control of Highly Ordered Mesoporous Silica SBA-15.” Chemistry of Materials 2000, 12, 275-279.
[70] Huo, Q.; Zhao, D.; Feng, J.; Weston, K.; Buratto, S. K.; Stucky, G. D.; Schacht, S.; Schuth, F. “Room-temperature growth of mesoporous silica fibers. A new high-surface-area optical waveguide.” Advanced Materials (Weinheim, Germany) 1997, 9, 974-978.
[71] Yang, P.; Zhao, D.; Chmelka, B. F.; Stucky, G. D. “Triblock-Copolymer-Directed Syntheses of Large-Pore Mesoporous Silica Fibers.” Chemistry of Materials 1998, 10, 2033-2036.
[72] Chen, B.; Lin, H.; Chao, M.; Mou, C.; Tang, C. “Mesoporous silica platelets with perpendicular nanochannels via a ternary surfactant system.” Advanced Materials (Weinheim, Germany) 2004, 16, 1657-1660.
[73] Fukuoka, A.; Miyata, H.; Kuroda, K. “Alignment control of a cyanine dye using a mesoporous silica film with uniaxially aligned meso-channels.” Chemical Communications (Cambridge, United Kingdom) 2003, , 284-285.
[74] Wang, D.; Zhou, W. L.; McCaughy, B. F.; Hampsey, J. E.; Ji, X.; Jiang, Y.; Xu, H.; Tang, J.; Schmehl, R. H.; O''Connor, C.; Brinker, C. J.; Lu, Y. “Electrodeposition of metallic nanowire thin films using mesoporous silica templates.” Advanced Materials (Weinheim, Germany) 2003, 15, 130-133.
[75] Morey, M. S.; O''Brien, S.; Schwarz, S.; Stucky, G. D. “Hydrothermal and Postsynthesis Surface Modification of Cubic, MCM-48, and Ultralarge Pore SBA-15 Mesoporous Silica with Titanium.” Chemistry of Materials 2000, 12, 898-911.
[76] Sinha, A. K.; Seelan, S.; Akita, T.; Tsubota, S.; Haruta, M. “Vapor phase propylene epoxidation over Au/Ti-MCM-41 catalysts prepared by different Ti incorporation modes.” Applied Catalysis, A : General 2003, 240, 243-252.
[77] Zheng, S.; Gao, L.; Zhang, Q.; Guo, J. “Synthesis, characterization and photocatalytic properties of titania-modified mesoporous silicate MCM-41.” Journal of Materials Chemistry 2000, 10, 723-727.
[78] Hsien, Y.; Chang, C.; Chen, Y.; Cheng, S. “Photodegradation of aromatic pollutants in water over TiO2 supported on molecular sieves.” Applied Catalysis, B: Environmental 2001, 31, 241-249.
[79] Van Grieken, R.; Sotelo, J. L.; Martos, C.; Fierro, J. L. G.; Lopez-Granados, M.; Mariscal, R. “Surface modified amorphous titanosilicate catalysts for liquid phase epoxidation.” Catalysis Today 2000, 61, 49-54.
[80] Kang, M.; Hong, W.; Park, M. “Synthesis of high concentration titanium-incorporated nanoporous silicates (Ti-NPS) and their photocatalytic performance for toluene oxidation.” Applied Catalysis, B: Environmental 2004, 53, 195-205.
[81] Corma, A.; Navarro, M. T.; Perez Pariente, J. “Synthesis of an ultralarge pore titanium silicate isomorphous to MCM-41 and its application as a catalyst for selective oxidation of hydrocarbons.” Journal of the Chemical Society, Chemical Communications 1994, 147-148.
[82] Chen, Y.; Huang, Y.; Xiu, J.; Han, X.; Bao, X. “Direct synthesis, characterization and catalytic activity of titanium-substituted SBA-15 mesoporous molecular sieves.” Applied Catalysis, A: General 2004, 273, 185-191.
[83] Prairie, M. R.; Evans, L. R.; Stange, B. M.; Marlinez, S. L. “An Investigation of Ti02 Photocatalysis for the Treatment of Water Contaminated with Metals and Organic Chemicals” Environmental Science & Technology, 1999, 27, 1776-1782
[84] 曾亮鋒 新式二氧化鈦觸媒膜的製備, 中央大學化學研究所, 桃園, 2000.
[85] 葉世墉 二氧化鈦的合成與光催化性質的研究, 中央大學化學工程與材料工程研究所, 桃園, 2005.
[86] Visser, T.; Nijhuis, T. A.; Eerden, M. J.; Jenken, K.; Ji, Y.; Bras, W.; Nikitenko, S.; Ikeda, Y.; Lepage, M.; Weckhuysen, B. M. “Promotion Effects in the Oxidation of CO over Zeolite-Supported Pt Nanoparticles.” Journal of Physical Chmistry B, 2005, 109, 3822-3831.
[87] Mergler, Y. J.; Hoebink, J.; Nieuwenhuys, B. E. “CO Oxidation over a Pt/CoOx/SiO2 Caalyst:A Study Using Temporal Analysis of Products.” Journal of Catalysis 1997, 167, 305-313.
[88] Bollinger, M. A.; Vannice, M. A. “A Kinetic and DRIFTS study of low temperature carbon monoxide over Au-TiO2 catalysts.” Applied Catalysis, B: Environmental 1996, 8, 417-443.
[89] Zhang, W.; Lu, J.; Han, B.; Li, M.; Xiu, J.; Ying, P.; Li, C. “Direct Synthesis and Characterization of Titanium-Substituted Mesoporous Molecular Sieve SBA-15.” Chemistry of Materials 2002, 14, 3413-3421.
[90] 呂卦南 二氧化鈦擔體鉑與銠觸媒之研究:光催化製備法、擔體效應與一氧化碳及一氧化氮之吸附與反應, 國立台灣大學化學系, 台北, 1995.
[91] Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Moscou, L.; Pierotti, R. A.; Rouquerol, J.; Siemieniewska, T. “Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984).” Pure and Applied Chemistry 1985, 57, 603-619.
[92] Henlein, A. “Small-particle research : Physicochemical properties of extremely small colloidal metal and semiconductor particle.” Chemical Review 1989, 89, 1861-1873.
[93] Ku, Y.; Lee, W. H.; Wang, W. Y. “Photocatalytic reduction of carbonate in aqueous solution by UV/TiO2 process” Journal of Molecular Catalysis A: Chemical, 2004, 212, 191-196.