跳到主要內容

簡易檢索 / 詳目顯示

研究生: 戴其璜
Chi-Hwang Tai
論文名稱: 振動床運動機制之研究
Dynamic Behavior in a Vibrated Bed
指導教授: 蕭述三
Shu-San Hsiau
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 89
語文別: 中文
論文頁數: 93
中文關鍵詞: 顆粒體粒子溫度自我擴散擾動速度分佈迴流胞無因次迴流率振動床
外文關鍵詞: granular, granular temperature, self-diffusion
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 本文首先以實驗的方法,定性探討顆粒振動床的迴流運動現象,實驗結果與相關文獻的實驗結果比較,頗為符合;進一步以定量的觀點分析振動顆粒床體振動加速度與粒子溫度的關係,同時計算迴流中心質量流率的大小。接著,以實驗的方法討論顆粒體擾動速度分佈及顆粒體振動床的自我擴散運動,粒子自我擴散運動乃是經由粒子間持續碰撞運動的變動速度所產生。在實驗方面,應用影像處理技術及粒子追蹤的方法,可準確量測並計算出追蹤粒子的位置與速度大小,藉由追蹤粒子的擴散位移與時間的關係可計算出粒子的自我擴散係數,由實驗結果顯示,自我擴散係數與振動參數如振動加速度、振動振幅與振動頻率的改變有重要的關係。
    此外,振動床體平均變動速度、粒子溫度的大小與自我擴散係數,由於受到垂直振動振動外力的影響,呈現非等向性分佈,在垂直方向分量大於水平方向分量,相關的研究在本文中均有深入的探討。



    The flow behaviors of convection cells of granular materials under vertical vibration are first investigated by experiment. The flow pattern and velocity vectors are consistent with the former experimental results. The profiles of the granular temperatures with the altitude of granular bed are studied with different vibration conditions.
    The influences of flow parameters on self-diffusion in the vibrated granular bed are studied by experiment. Employing the image processing technology and particle tracking method, the local displacements and velocities of particles are measured.The self-diffusion coefficients are determined from the history of particles'' diffusive displacements.
    The flow behaviors of convection cell are strongly related to the self-diffusion of particles induced by the energy input from the vertical external vibration. The velocity fluctuations, granular temperature and self-diffusions are anisotropic with the greatest conponents in the vertical direction. The dependence of the diffusion coefficients on the dimensionless acceleration, vibration amplitude, vibration frequency, velocity fluctuations, and granular temperature are discussed carefully.

    摘要…………………………………………………………………….…I 附表目錄………………………………………………………….…….IV 附圖目錄…………………………………………………….…………..V 符號說明………………………………………………………….…….IX 第一章簡介…………………………………………………………..…1 1.1 粒子流簡介………………………………….……………………1 1.1.1 顆粒體介紹…………………………………………………..1 1.1.2 粒子流與一般流體之異同…………………………………..2 1.1.3 粒子流之研究發展…………………………………………..4 1.2 垂直振動床應用於粒子流的研究歷史………………………….8 1.3 迴流現象的研究動機與方向…………………………………...13 1.4 研究方向與架構………………………………………………...14 第二章實驗方法………………………………………………………16 2.1 實驗設備………………………………………………………...16 2.2 實驗原理與方法………………………………………………...20 2.2.1 實驗參數原理………………………………………………21 2.2.2 影像處理在粒子流中的應用………………………………22 2.2.3 Correlation簡介……………………………………………..25 2.2.4 Correlation程式流程………………………………………..27 2.3粒子溫度及擾動速度分佈之概念……………………………….29 2.4自我擴散理論…………………………………………………….30 2.5 實驗步驟………………………………………………………...32 2.6 誤差分析……………………………………………….………..34 第三章 結果與討論……………………………………………………35 3.1 不同振動加速度對於迴流現象之影響………………………...36 3.2 不同振動速度對迴流現象之影響………..…………………….39 3.3 不同顆粒堆積高度對於迴流現象之影響……………………...42 第四章 結論……………………………………………………………45 參考文獻………………………………………………………………..47 附表目錄 表一:實驗參數配置表。 …………………………………...………….53 附圖目錄 圖一: 為振動床實驗設備簡圖。 ………………………………..……54 圖二: 為影像的示意圖; (a) 描述兩張影像之間的相似性的影像圖, (b)實驗原始的影像圖,(c)經過高通濾波之後的影像圖。 …………………………………………………………..55 圖三: 為經過邊緣強化後振動容器內顆粒體的影像圖; (a) after Sobel-east-filter, (b) after Sobel-west-filter, (c) after Sobel-south-filter, (d) after Sobel-north-filter。 ……………..56 圖四: 不同的振動加速度下顆粒體運動的速度向量圖; (a) G = 2.0 (b) G = 3.0 (c) G = 4.0 (d) G = 5.0 (e) G = 6.0。 …………..……..57 圖五: 為無因次迴流質量流率(J)與振動床之振動加速度(G)間的關係圖。 …………..………………………………………………58 圖六: 在不同的振動加速度下顆粒體運動的擾動速度分佈圖; (a) G = 2.0 (b) G = 3.0 (c) G = 4.0 (d) G = 5.0 (e) G = 6.0 。 ……...59 圖七: 為整體粒子溫度(T)和振動加速度(G)的關係圖。 …………....60 圖八: 振動床中無因次質量流率(J)和整體粒子溫度(T)的關係圖。 ………………………………………………………..…61 圖九: 在不同的振動加速度下顆粒體擴散位移相對於時間(t)的關係圖; (a) G = 2.0 (b) G = 3.0 (c) G = 4.0 (d) G = 5.0 (e) G = 6.0。 ………………………………………………………….62 圖十: 為粒子自我擴散係數(D)和振動加速度(G)的關係圖。 …..…..63 圖十一: 粒子自我擴散係數(D)和無因次質量流率(J)的關係圖。 …………………………………………………………64 圖十二: 粒子自我擴散係數(D)和整體粒子溫度(T)的關係圖。 ………………………………………………………..65 圖十三: 表示當振動容器在不同的振動速度下顆粒體運動的速度向量圖; (a) Vb = 1.457 (b) Vb = 1.821 (c) Vb = 2.276 (d) Vb = 2.428 (e) Vb = 2.913。 …………………………….………..66 圖十四: 為粒子無因次質量流率(J)和床台振動速度(Vb)的關係圖。………………………………………………………67 圖十五: 為在不同的振動速度下粒子擾動速度的分佈圖; (a) Vb = 1.457 (b) Vb = 1.821 (c) Vb = 2.276 (d) Vb = 2.428 (e) Vb = 2.913。 ……………………………………………………...68 圖十六: 為整體粒子溫度(T)和床台振動速度(Vb)的關係圖。 …...…69 圖十七: 無因次質量流率(J)和整體粒子溫度(T)的關係圖。 …….…70 圖十八: 粒子自我擴散位移在不同的振動速度下對時間(t)的關係圖; (a) Vb = 1.457 (b) Vb = 1.821 (c) Vb = 2.276 (d) Vb = 2.428 (e) Vb = 2.913。 …………………...……………….………….71 圖十九: 粒子自我擴散係數(D)和振動速度(Vb)的關係圖。 ………..72 圖二十: 粒子自我擴散係數(D)和質量流率(J)的關係圖。 ………....73 圖二十一: 整體粒子自我擴散係數(D)和整體粒子溫度(T)的關係圖。 ………………………………………………………..74 圖二十二:表示在相同的振動條件下,不同的粒子堆積高度,顆粒體運動的速度向量圖;(a) h = 2.0 cm (b) h = 5.0 cm (c) h = 10.0 cm。 ………………………………………………….75 圖二十三: 為粒子無因次質量流率(J)和粒子堆積高度(h)的關係圖。 ………………………..……………………………76 圖二十四: 在不同的粒子堆積高度下顆粒體擾動速度的分佈圖;(a) h = 2.0 cm (b) h = 5.0 cm (d) h = 10.0 cm。 …………………77 圖二十五: 整體粒子溫度(T)對粒子堆積高度(h)的關係圖。 ………78 圖二十六: 粒子自我擴散位移在不同的振動速度下對時間(t)的關係圖; (a) h = 2.0 cm (b) h = 5.0 cm (c) h = 10.0 cm。 .……...79 圖二十七: 粒子自我擴散係數(D)對於粒子高度(h)的關係圖。 ……80 圖二十八: 顆粒體的自我擴散係數(D)和無因次質量流率(J)的關係圖。 ………………………………………………………..81 圖二十九:粒子整體自我擴散係數(D)對於整體粒子溫度(T)的關係圖。………………………………………………………82

    Ahn, H., Brennen, C. E. and Sabersky, R. H., 1991, “Measurements of Velocity Fluctuation, Density, and Stressesin Chute Flows of Granular Materials,” J. Appl. Mech., Vol. 58, pp. 792-803.
    Bachman, D., 1940, Verfahrenstechnik Z .D.I . Beiheft, No. 2, pg. 43. (cited by Thomas et al., 1989.)
    Barker, G. C. and Mehta, A., 1993, “Size Segregation Mechanisms,” Nature, Vol. 364, pp. 486-487.
    Brennen, C. E., Ghosh, S., and Wassgren, C. R, 1996, “Vertical oscillation of a bed of granular material,” J. of Appl. Mech., Vol. 63, No. 1, pp.156-0161.
    Bridgwater, J.,1980, “Self-Diffusion Coefficients in Deforming Powders,
    ” Powder Technol., Vol. 25, pp. 129-131.
    Buggusch, H. and Loffelmann, G., 1989, “Theoretical and Experimental Investigations into Local Granulate Mixing Mechanisms,” Chem. Engng. Process, Vol. 26, pp. 193-200.
    Campbell, C. S. and Brennen, C. E., 1985a, “Computer Simulation of Granular Shear Flows,” J. Fluid Mech., Vol. 151, pp. 167-188.
    Campbell, C. S. and Brennen, C. E., 1985b,“Chute flows of granular material: some computer simulations,”J. Appl. Mech, Vol. 52, pp. 72-178.
    Campbell, C. S. and Gong, A., 1986, “The Stress Tensor in a Two- Dimensional Granular Shear Flow,” J. Fluid Mech., Vol. 164. pp. 107-125.
    Campbell, C. S., 1989, “The Stress Tensor for Simple Shear Flow of a Granular Material,” J. Fluid Mech.,Vol. 203. pp. 449-473.
    Chlenov, V. A. and Mikhailov,N.V., 1965,“Some properties of a vibrating fluidized bed,”J. of Eng. Phys., Vol. 9, pp. 137-139
    Cooke, W., Warr, S., Huntley, J. M. and Ball, R. C., 1996,“Particle size segregation in a two-dimensional bed undergoing vertical vibration,”Phys. Rev. E., Vol. 53, pp. 2812-2822.
    Douady, S., Fauve, S., and Laroche, C., 1989,“Subharmonic instabilities and defect in a granular layer under vertical vibrations,”Europhys. Lett., Vol. 8, No. 7, pp. 621-627.
    Duran, J., Rajchenbach, J. and Clement, E., 1993,“Arching effect model for particle size segregation,”Phys. Rev. Lett., Vol. 70, pp. 2431-2434.
    Evesque, p. and Rajchenbach, J., 1989,“Instability in a sand heap,”Phys. Rev. Lett., Vol. 69, No. 1, pp. 44-46.
    Gallas, J. A. C., Herrmann, H. J. and Sokolowski, S., 1992, “Convection Cells in Vibratinsg Granular Media,” Phys. Rev. Lett., Vol. 69, pp. 1371-1374.
    Grossman, E. L., 1997,“Effects of container geometry on granular convection”Phys. Rev. E., Vol. 56, No. 3, pp. 3290-3299.
    Hanes, D. M. and Inman, D. L., 1985, “Observations of Rapid Flowing Granular--Fluid Flow,” J. Fluid Mech., Vol. 150, pp. 357-380.
    Hsiau, S. S. and Hunt, M. L., 1993a, “Shear-Induced Particle Diffusion and Logitndinal Velocity Fluctuations in a Granular-Flow Mixing Layer,” J. Fluid Mech., Vol. 251, pp. 299-313.
    Hsiau, S. S. and Hunt, M. L., 1993b, “Kinetic Theory Analysis of Flow- Induced Particle Diffusion and Thermal Conduction in Granular S. S. Hsiau and H. Y. Yu, Segregation phenomena in a shaker, Powder Technol., 93, pp. 83-88, 1997.
    Hsiau, S. S. and Pan, S. J., 1998,“Motion state transitions in a vibrated granular bed,”Powder Technol., Vol. 96, pp.219-226.
    Hsiau, S. S., Wu, M. H. and Chen, C. H., 1998,“Arching phenomena in a vibrated granular bed,”Powder Technol., Vol. 99, pp. 185-193
    Hunt, M. L., Hsiau, S. S. and Hong, K. T., 1994, “Particle Mixing and Volumetric Expansion in a Vibrated Granular Bed,” J. Fluids Engi., Vol. 116, pp. 785-791.
    Hwang, C. L. and Hogg, R., 1980, “Diffusive Mixing in Flowing Powder Calculations for Shearing Assemblies of Inelastic, Frictional disks,” J. Rheol.,Vol. 30. pp. 949-980.
    Jaeger, H. M. and Nagel, S. R., 1992, “Physics of the Granular State,” Science, Vol. 255, pp. 1523-1531.
    Jenkins, J. T. and Savage, S. B., 1983, “A Theory for the Rapid Flow of Identical, Smooth, Nearly Elastic, Particles,” J. Fluid Mech., Vol. 130, pp. 187-202.
    Johnson, P. C., Nott, P. and Jackson, R., 1990, “Frictional-Collisional Equations of Motion for Particulate Flows and their Application to Chutes,” J. Fluid Mech., Vol. 210, pp. 501-535.
    Jullien, R., Meakin, P. and Parlovitch, A., 1992,“Three-dimensional model for particle-size segregation by shaking,”Phys. Rev. Lett., Vol. 69, pp. 640-643.
    Jullien, R., Meakin, P. and Pavlovitch, A., 1993a,“Jullien, Meakin, and Pavlovitch Reply,”Phys. Rev. Lett., Vol. 70.
    Kennard, E. H., 1938, “Kinetic Theory of Gases,” McGraw-Hill
    Knight, J. B., Ehrichs, E. E., Kuperman, V. Y., Flint, Jaeger, H. M., and Nagel, S. R., 1996,“An experimental study of granular convection,”Phys. Rev. E., Vol. 54, pp. 5726-5738.
    Knight, J. B., 1997,“External boundaries and internal shear bands in granular convection,”Phys. Rev. E., Vol. 55, No. 5, pp. 6016-6023.
    Knight, J. B., Jaeger, H. M. and Nagel, S. R., 1993,“Vibration induced size separation in granular media: the convection connection,”Phys. Rev. Lett., Vol. 70, pp. 3728-3731.
    Lan, Y. and Rosato, A.D., 1995,“Macroscopic behavior of vibrating beds of smooth inelastic spheres,”Phys. Fluids, Vol. 7, No. 8, pp. 1818-1831.
    Laroche, C., Douady, S., and Fauve, S., 1990,“Convective flow of granular masses under vertical vibrations,”J. Phys. France, Vol. 50, No.7, pp. 699-706.
    Lee, J., “Heap formation in two-dimensional granular media,” J. Phys. A, 27, L257-L262, 1994.
    Lun, C. K. K., Savage, S. B., Jeffrey, D. J. and Chepurniy, N., 1984, “Kinetic Theories for Granular Flow:Inelastic Particles in Couette Flow and Slightly Inelastic Particles in a General Flowfield,” J. Fluid Mech., Vol. 140, pp. 223-256.
    Mehta, A. and Barker, G. C., 1991, “Vibrated Powders: A Microscopic Approach,” Phys. Rev. Lett., Vol. 67, pp. 394-397.
    Natarajan, V. V. R., Hunt, M. L. and Taylor, E. D., 1995, “Local Measurements of Velocity Fluctuations and Diffusion Coefficients for A Granular Material Flow,” J. Fluid Mech., Vol. 304, pp. 1-25.
    Pak, H., Van Doorn, E., and Behringer, R., 1995,“Effects of ambient gases on granular material under vertical vibration,”Phys. Rev. Lett, Vol. 74, No.23, pp. 4643-4646.
    Reynolds, Osborne, 1885, “On the Dilatancy of Media Composed of
    Rigid Particles in Contact,” Phil. Mag., Vol. 20.
    Reynolds, Osborne, 1887, “Experiments Showing Dilutency, A Property of Granular Materials Possibly Connected with Gravitation,” Proc. Roy. Inst. Great Brit., Vol. 11, pp. 354.
    Richman, M. W. and Marciniec, R. P., 1990,“Gravity-driven granular flows of smooth inelastic spheres down bumpy inclines,”J. Appl. Mech., Vol. 112, pp. 1036-1043.
    Rosato, A. D., Katherine, J. S., Friedrich, P., Robert, H. S., 1987,“Why the brazil nuts are on top: size segregation of particulate matter by shaking,”Phy. Rev. Lett., Vol. 58, No. 10, pp. 1038-1040
    Rosato, A. D., Lan, Y. and Wang, D. T., 1991,“Vibratory particle size sorting in multi-component systems,”Powder Technol., Vol. 66, pp. 149-160.
    Savage, S. B. and Jeffrey, D. J., 1981, “The Stress Tensor in a Granular Flow at High Shear Rates,” J. Fluid Mech., Vol. 110, pp. 255-272.
    Savage, S. B. and Mckeown, S., 1983, “Shear Stress Developed during Rapid Shear of Dense Concentrations of Large Spherical Particles between Concentric Cylinders,” J. Fluid Mech., Vol. 127, pp. 453- 472.
    Savage S. B. and Sayed, M., 1984, “Stresses Developed by Dry Cohesionless Granular Materials Sheared in an Annular Shear Cell,” J. Fluid Mech., Vol. 142, pp. 391-430.
    Savage, S. B., 1992, “Disorder, Diffusion and Structure Formation in Granular Flows,” in Disorder and Granular Media, D. Bideau, ed., Elsevier Science Publishers, Amsterdam, pp. 225-285.
    Shamlon, P. A., 1988, Handling of Bulk Solids, Butterworth, London.
    Thomas, B. Mason, M. O., Liu, Y. A. and Squires, A. M., 1989,“Identifying states in shallow vibrated beds,”Powder Technol., Vol. 57, pp. 267-280.
    Taguchi, Y. h., 1992, “New Origin of a Convective Motion : Elasticall Induced Convection in Granular Materials,” Phys. Rev. Lett., Vol. 69, pp. 1367-1370.
    Troadec, J. P. and Dodds, J. A., 1993, “Global Geometrical Description of Homogeneous Hard Sphere Packings,” in Disorder and Granular Media, D. Bideau, ed., Elsevier Science Publishers, Amsterdam, pp. 133-163.
    Vanel, Loic, Rosato, A. D., and Dave, R. D., 1997,“Rise-time regimes of a large sphere in vibrated bulk solids,”Phy. Rev. Lett., Vol. 78, pp. 1255-1258.
    Walton, O. R. and Braun, R.L., 1986b, “Stress Calculations for Assemblies of Inelastic Spheres in Uniform Shear,” Acta Mechanica,Vol. 63. pp. 73-86.
    Wang, D. G. and Campbell, C. S., 1992, “Reynolds Analogy for a Shearing Granular Msterials,” J. Fluid Mech., Vol. 244, pp. 527-546.
    Wassgren, C. R., Brennen, C. E. and Hunt, M. L., 1995, “Vertical Vibration of a Bed of Granular Material in a Container,” Accepted for publication in J. Appl. Mech.
    Wassgren, C. R, 1997,“Vibration of granular materials,”Ph.D. Thesis, California Institute of Technology, California, USA.
    Wassgren, C. R, Brennen, C. E, and Hunt, M. L., 1996,“Vertical vibration of a deep beds of granular material in a contiainer,”J. Appl. Mech.,Vol.63, pp.712-719.

    QR CODE
    :::