跳到主要內容

簡易檢索 / 詳目顯示

研究生: 努巴迪
Farid Nur Bahti
論文名稱: 用於滑坡監測的 PS- 和 SBAS-InSAR 處理的參數研究——以阿里山為例
Parametric Study of the PS- and SBAS-InSAR Processing for Landslide Monitoring – Ali-Shan as Case Study
指導教授: 鐘志忠
Chung, Chih-Chung,
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 131
中文關鍵詞: 滑坡監測
外文關鍵詞: InSAR
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣位處環太平洋地震帶上,由菲律賓海板塊和歐亞板塊碰撞形成的。因此台灣的地質處於不穩定和破碎的狀態,經常發生地震。此外,該島的氣候是屬於亞熱帶季風性氣候,常遭遇颱風和強降雨,增加了邊坡滑動的風險。作為應對山崩等自然災害的預防措施,近年來山崩監測系統顯著增加。然而,當大範圍山崩在發生時,傳統的監測系統因局限性而無法提供有效的監測。為實現監測預防,需要能提供綜合監測系統的技術,例如遙感探測技術。合成孔徑雷達 (SAR)屬於微波成像雷達,而干涉合成孔徑雷達(InSAR)是基於 SAR的新型地面位移監測技術。 InSAR 方法主要於同一地點的多個 SAR 圖像進行配準。許多研究採用 InSAR 來監測滑坡和地表下陷,但InSAR根據不同的情況及研究使用方式不同,並不存在參數最佳值或是範圍以做參考,在滑坡監測中尤其如此。因此,本研究根據需求應用StaMPS方法來生成 PS-InSAR 和 SBAS 結果,透過阿里山GNSS監測地點,檢查PS-InSAR和SBAS方法的參數,並使用 RMSE 方法與GNSS 數據做對比,藉以取得參數建議值。PS-InSAR 和 SBAS 處理的五個主要影響參數分別是amplitude dispersion、unwrap_grid_size、unwrap_gold_alpha、unwrap_gold_n_win 和 unwrap_time_n_win。在PS-InSAR將參數分別設置為0.47 ≤ 0.48、≤ 50、 0.8、 <32、<100,在SBAS中將參數分別設置為,≥0.6、≤ 30m、 0.8、 ≤ 24、≤32。 為測試每個參數適用性,本研究進一步透過桃園義盛驗證上述建議參數, 但建議後續可在其他監測地點採用類似的比較方法來驗證。


    Monitoring systems have increased significantly in recent years as a preventative step for dealing with natural disasters like landslides. The use of remote sensing for surface displacement measurement has been established for several decades, and this tool has been enhanced by the use of Synthetic Aperture Radar (SAR). A new technique for land movement monitoring was born from the SAR, known as Interferometric SAR (InSAR). The InSAR method involves co-registering multiple SAR images simultaneously and in place, and many researchers have adopted it to monitor landslide and subsidence. However, InSAR is a black box without a guideline for an optimal range or value of its parameters. Based on the requirements, this study carefully examined PS-InSAR and SBAS methods parameters and then to find the optimal values of parameters at Ali-shan, Chiayi by comparing with GNSS data using RMSE approach. Here we applied the STAMPS approach to generate the optimal range of PS and SBAS parameters. Finally, five influential parameters and suggested values of PS and SBAS processing have been found: 0.47 ≤ amplitude dispersion ≤ 0.48, unwrap_grid_size ≤ 50, unwrap_gold_alpha= 0.8, unwrap_gold_n_win =< 32, and unwrap_time_n_win ≤ 100 for PS, and ≥ 0.6, ≤ 30m, 0.8, ≤ 24, ≤32 respectively for SBAS. Moreover, to evaluate the feasibility of each parameter, we tested those parameters in I-Shan location with GNSS as well. At this 2nd study case we found the our optimal value more effective compared to the default value. However, a similar comparison in other places for verification is suggested to propose relevant optimal range of each parameter.

    ABSTRACT ................................................................................................................... iii PREFACE ...................................................................................................................... iv ACKNOWLEDGMENT ................................................................................................ v TABLE OF CONTENTS .............................................................................................. vi LIST OF FIGURES ..................................................................................................... viii LIST OF TABLES ........................................................................................................ xii CHAPTER I. INTRODUCTION ................................................................................ 13 1.1. Motivation ....................................................................................................... 13 1.2. Objective ......................................................................................................... 15 1.3. Research Outline ............................................................................................ 15 CHAPTER II. LITERATURE REVIEW .................................................................. 16 2.1. Landslide Characteristic ............................................................................... 16 2.2. Remote Sensing Technology ......................................................................... 18 2.3. Sentinel-1 Platform ........................................................................................ 23 2.4. SAR Processing: Methods and Techniques ................................................. 25 2.4.1. Interferogram SAR................................................................................. 26 2.4.2. DInSAR ................................................................................................... 28 2.4.3. PS-InSAR ................................................................................................ 29 2.4.4. SBAS-SAR ............................................................................................... 34 2.4.5. GNSS ........................................................................................................ 36 2.5. Implementations of InSAR in Landslide Monitoring ................................. 38 2.6. LoS Projection ................................................................................................ 43 2.7. Brief Comments ............................................................................................. 45 CHAPTER III. METHODOLOGY ............................................................................ 46 3.1. Proposed Standard Workflow of InSAR Methods ..................................... 46 3.2. PS-InSAR Workflow ..................................................................................... 47 3.2.1. Pre-Processing Step ................................................................................ 48 3.2.2. Main Step in STAMPS/MTI .................................................................. 56 3.3. SBAS Workflow ............................................................................................. 64 3.3.1. Interferogram Formation ...................................................................... 68 3.3.2. Small-Baselines Formation .................................................................... 70 3.4. Descriptions of Study Locations ................................................................... 72 3.4.1. Ali-Shan as test case ............................................................................... 72 vii 3.4.2. I-Shen as verified case ............................................................................ 77 3.5. RTK GNSS Processing .................................................................................. 80 3.6. Statistical Approach ...................................................................................... 87 CHAPTER IV. RESULTS AND DISCUSSIONS ...................................................... 89 4.1. PSInSAR processing at Ali-Shan testing case ............................................. 89 4.1.1. Amplitude Dispersion ............................................................................. 89 4.1.2. Unwrap_Grid_Size ................................................................................. 92 4.1.3. Unwrap_Gold_n_Win ............................................................................ 95 4.1.4. Unwrap_Time_Win .............................................................................. 100 4.1.5. Unwrap_Gold_Alpha ........................................................................... 104 4.1.6. Short Summary ..................................................................................... 105 4.2. SBAS processing at Ali-Shan testing case .................................................. 106 4.2.1. Amplitude Dispersion (DA) ................................................................. 106 4.2.2. Unwrap_grid_size ................................................................................. 107 4.2.3. Unwrap_gold_alpha ............................................................................. 112 4.2.4. Unwrap_gold_n_win ............................................................................ 113 4.2.5. Unwrap_time_win ................................................................................ 118 4.2.6. Short Sumarry ...................................................................................... 122 4.3. PSInSAR and SBAS processing at I-Shen verified case ........................... 123 CHAPTER V. CONCLUSION AND SUGGESTION ............................................ 130 5.1. Conclusions ................................................................................................... 130 5.2. Suggestions ................................................................................................... 131 REFERENCES ........................................................................................................... 132 APPENDIX ................................................................................................................. 141

    Abolmasov, B., Milenković, S., Jelisavac, B., Pejić, M., andRadić, Z. (2015). The Analysis of Landslide Dynamics Based on Automated GNSS Monitoring—A Case Study. In Engineering Geology for Society and Territory - Volume 2 (pp. 143-146).
    Antonielli, Mazzanti, Rocca, Bozzano, andDei, C. (2019). A-DInSAR Performance for Updating Landslide Inventory in Mountain Areas: An Example from Lombardy Region (Italy). Geosciences, 9(9), 364. doi:10.3390/geosciences9090364
    Aslan, G., Foumelis, M., Raucoules, D., De Michele, M., Bernardie, S., andCakir, Z. (2020). Landslide Mapping and Monitoring Using Persistent Scatterer Interferometry (PSI) Technique in the French Alps. Remote Sensing, 12(8), 1305. doi:10.3390/rs12081305
    Barla, G., Antolini, F., Barla, M., Mensi, E., andPiovano, G. (2010). Monitoring of the Beauregard landslide (Aosta Valley, Italy) using advanced and conventional techniques. Engineering Geology, 116(3-4), 218-235. doi:10.1016/j.enggeo.2010.09.004
    Berardino, P., Fornaro, G., Lanari, R., andSansosti, E. (2002). A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Transactions on Geoscience and Remote Sensing, 40(11), 2375-2383. doi:10.1109/tgrs.2002.803792
    Bobrowsky, P., Sladen, W., Huntley, D., Qing, Z., Bunce, C., Edwards, T., Hendry, M., Martin, D., andChoi, E. (2015). Multi-parameter Monitoring of a Slow Moving Landslide: Ripley Slide, British Columbia, Canada. In Engineering Geology for Society and Territory - Volume 2 (pp. 155-158).
    133
    Booysen, R., Gloaguen, R., Lorenz, S., Zimmermann, R., andNex, P. A. M. (2021). Geological Remote Sensing. 301-314. doi:10.1016/b978-0-12-409548-9.12127-x
    Bovenga, F., Pasquariello, G., Pellicani, R., Refice, A., andSpilotro, G. (2017). Landslide monitoring for risk mitigation by using corner reflector and satellite SAR interferometry: The large landslide of Carlantino (Italy). Catena, 151, 49-62. doi:10.1016/j.catena.2016.12.006
    Brückl, E., Brunner, F. K., andKraus, K. (2006). Kinematics of a deep‐seated landslide derived from photogrammetric, GPS and geophysical data. Engineering Geology, 88(3-4), 149-159. doi:10.1016/j.enggeo.2006.09.004
    Calamita, G., Serlenga, V., Stabile, T. A., Gallipoli, M. R., Bellanova, J., Bonano, M., Casu, F., Vignola, L., Piscitelli, S., andPerrone, A. (2018). An integrated geophysical approach for urban underground characterization: the Avigliano town (southern Italy) case study. Geomatics, Natural Hazards and Risk, 10(1), 412-432. doi:10.1080/19475705.2018.1526220
    Campbell, J. B., andWynne, R. H. (2011). Introduction to Remote Sensing, Fifth Edition. New York: The Guilford Press.
    Carlà, T., Tofani, V., Lombardi, L., Raspini, F., Bianchini, S., Bertolo, D., Thuegaz, P., andCasagli, N. (2019). Combination of GNSS, satellite InSAR, and GBInSAR remote sensing monitoring to improve the understanding of a large landslide in high alpine environment. Geomorphology, 335, 62-75. doi:10.1016/j.geomorph.2019.03.014
    Cascini, L., Fornaro, G., andPeduto, D. (2010). Advanced low- and full-resolution DInSAR map generation for slow-moving landslide analysis at different scales. Engineering Geology, 112(1-4), 29-42. doi:10.1016/j.enggeo.2010.01.003
    134
    Casu, F., Elefante, S., Imperatore, P., Zinno, I., Manunta, M., De Luca, C., andLanari, R. (2014). SBAS-DInSAR Parallel Processing for Deformation Time-Series Computation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(8), 3285-3296. doi:10.1109/jstars.2014.2322671
    Casu, F., Manzo, M., andLanari, R. (2006). A quantitative assessment of the SBAS algorithm performance for surface deformation retrieval from DInSAR data. Remote Sensing of Environment, 102(3-4), 195-210. doi:10.1016/j.rse.2006.01.023
    Chaabani, A., andDeffontaines, B. (2020). Application of the SBAS-DInSAR technique for deformation monitoring in Tunis City and Mornag plain. Geomatics, Natural Hazards and Risk, 11(1), 1346-1377. doi:10.1080/19475705.2020.1788654
    Chen, R.-F., Lee, C.-Y., Yin, H.-Y., Huang, H.-Y., Cheng, K.-P., andLin, C.-W. (2017). Monitoring the Deep-Seated Landslides by Using ALOS/PALSAR Satellite Imagery in the Disaster Area of 2009 Typhoon Morakot, Taiwan. 239-247. doi:10.1007/978-3-319-53487-9_27
    Colesanti, C., andWasowski, J. (2006). Investigating landslides with space-borne Synthetic Aperture Radar (SAR) interferometry. Engineering Geology, 88(3-4), 173-199. doi:10.1016/j.enggeo.2006.09.013
    Corominas, J., van Westen, C., Frattini, P., Cascini, L., Malet, J. P., Fotopoulou, S., Catani, F., Van Den Eeckhaut, M., Mavrouli, O., Agliardi, F., Pitilakis, K., Winter, M. G., Pastor, M., Ferlisi, S., Tofani, V., Hervás, J., andSmith, J. T. (2014). Recommendations for the quantitative analysis of landslide risk. Bulletin of Engineering Geology and the Environment. doi:10.1007/s10064-013-0538-8
    Cruden, D. M., andVarnes, D. J. (1996). Landslide Types and Processes (Special Report ed. Vol. 247). Washington, DC: U.S. National Academy of Sciences.
    135
    Du, Y., Feng, G., Liu, L., Fu, H., Peng, X., andWen, D. (2020). Understanding Land Subsidence Along the Coastal Areas of Guangdong, China, by Analyzing Multi-Track MTInSAR Data. Remote Sensing, 12(2). doi:10.3390/rs12020299
    Dumka, R. K., SuriBabu, D., Malik, K., Prajapati, S., andNarain, P. (2020). PS-InSAR derived deformation study in the Kachchh, Western India. Applied Computing and Geosciences, 8. doi:10.1016/j.acags.2020.100041
    Dwivedi, R., Narayan, A. B., Tiwari, A., Dikshit, O., andSingh, A. K. (2016). Multi-Temporal Sar Interferometry for Landslide Monitoring. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLI-B8, 55-58. doi:10.5194/isprsarchives-XLI-B8-55-2016
    Fárová, K., Jelének, J., Kopačková-Strnadová, V., andKycl, P. (2019). Comparing DInSAR and PSI Techniques Employed to Sentinel-1 Data to Monitor Highway Stability: A Case Study of a Massive Dobkovičky Landslide, Czech Republic. Remote Sensing, 11(22). doi:10.3390/rs11222670
    Ferretti, A., Guarnieri, A. M., Prati, C., andRocca, F. (2007). InSAR Principles: Guidelines for SAR Interferometry Processing and Interpretation. The Netherlands: ESA Publications.
    Ferretti, A., Prati, C., andRocca, F. (1999). Permanent Scatterers in SAR Interferometry. IEEE Geoscience and Remote Sensing Magazine.
    Ferretti, A., Prati, C., andRocca, F. (2001). Permanent scatterers in SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 39(1), 8-20. doi:10.1109/36.898661
    Florinsky, I. (2016). Digital Terrain Analysis in Soil Science and Geology. London Wall, London, UK: Academic Press.
    136
    Foroughnia, F., Nemati, S., Maghsoudi, Y., andPerissin, D. (2019). An iterative PS-InSAR method for the analysis of large spatio-temporal baseline data stacks for land subsidence estimation. International Journal of Applied Earth Observation and Geoinformation, 74, 248-258. doi:10.1016/j.jag.2018.09.018
    Gabriel, A. K., Goldstein, R. M., andZebker, H. A. (1989). Mapping small elevation changes over large areas: Differential radar interferometry. Journal of Geophysical Research, 94(B7). doi:10.1029/JB094iB07p09183
    Goorabi, A. (2020). Detection of landslide induced by large earthquake using InSAR coherence techniques – Northwest Zagros, Iran. The Egyptian Journal of Remote Sensing and Space Science, 23(2), 195-205. doi:10.1016/j.ejrs.2019.04.002
    Hanssen, R. F. (2001). Radar Interferometry: Data Interpretation and Error Analysis. London: Kluwer Academic Publishers.
    Hanssen, R. F., andFerretti, A. (2002). Deformation Monitoring by Satellite Interferometry. GIM International.
    Hein, A. (2004). Processing of SAR Data_ Fundamentals, Signal Processing, Interferometry. Heidelberg: Springer-Verlag Berlin Heidelberg.
    Hoek, E., andBray, J. W. (1981). Rock slope engineering (3rd edition). London: The Institution of Mining and Metallurgy.
    Hooper, A., Segall, P., andZebker, H. (2007). Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcán Alcedo, Galápagos. Journal of Geophysical Research, 112(B7). doi:10.1029/2006jb004763
    Hooper, A., Zebker, H., Segall, P., andKampes, B. (2004). A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophysical Research Letters, 31(23). doi:10.1029/2004gl021737
    137
    Höser, T. (2018). Analysing the Capabilities and Limitations of InSAR using Sentinel-1 data for Landslide Detection and Monitoring. (Master of Science), University of Bonn,
    Hu, J., Li, Z. W., Ding, X. L., Zhu, J. J., Zhang, L., andSun, Q. (2014). Resolving three-dimensional surface displacements from InSAR measurements: A review. Earth-Science Reviews, 133, 1-17. doi:10.1016/j.earscirev.2014.02.005
    Intrieri, E., Raspini, F., Fumagalli, A., Lu, P., Del Conte, S., Farina, P., Allievi, J., Ferretti, A., andCasagli, N. (2017). The Maoxian landslide as seen from space: detecting precursors of failure with Sentinel-1 data. Landslides, 15(1), 123-133. doi:10.1007/s10346-017-0915-7
    Jennifer, J. J., Saravanan, S., andPradhan, B. (2020). Persistent Scatterer Interferometry in the post-event monitoring of the Idukki Landslides. Geocarto International, 1-15. doi:10.1080/10106049.2020.1778101
    Kampes, B. M. (2006). Radar Interferometry Persistent Scatterer Technique. The Netherland: Springer.
    Lanari, R., Casu, F., Manzo, M., Zeni, G., Berardino, P., Manunta, M., andPepe, A. (2007). An Overview of the Small BAseline Subset Algorithm: a DInSAR Technique for Surface Deformation Analysis. Pure and Applied Geophysics, 164(4), 637-661. doi:10.1007/s00024-007-0192-9
    Li, Z., Cao, Y., Wei, J., Duan, M., Wu, L., Hou, J., andZhu, J. (2019). Time-series InSAR ground deformation monitoring: Atmospheric delay modeling and estimating. Earth-Science Reviews, 192, 258-284. doi:10.1016/j.earscirev.2019.03.008
    Lillesand, T. M., Kiefer, R. W., andChipman, J. (2015). Remote Sensing and Image Interpretation. The United States of America: Wiley.
    138
    McCormack, H., Thomas, A., andSolomon, I. The capabilities and limitations of satellite InSAR and terrestrial radar interferometry.pdf>. Fugro NPA Limited.
    Moreira, A., Prats-Iraola, P., Younis, M., Krieger, G., Hajnsek, I., andPapathanassiou, K. P. (2013). A tutorial on synthetic aperture radar. IEEE Geoscience and Remote Sensing Magazine, 1(1), 6-43. doi:10.1109/mgrs.2013.2248301
    Oštir, K., andKomac, M. (2007). PSInSAR and DInSAR methodology comparison and their applicability in the field of surface deformations–A case of NW Slovenia. Geologija, 50(1), 77-96. doi:10.5474/geologija.2007.007
    Ottinger, M., andKuenzer, C. (2020). Spaceborne L-Band Synthetic Aperture Radar Data for Geoscientific Analyses in Coastal Land Applications: A Review. Remote Sensing, 12(14). doi:10.3390/rs12142228
    Pawluszek-Filipiak, K., andBorkowski, A. (2020). Integration of DInSAR and SBAS Techniques to Determine Mining-Related Deformations Using Sentinel-1 Data: The Case Study of Rydułtowy Mine in Poland. Remote Sensing, 12(2). doi:10.3390/rs12020242
    Pepe, A., Solaro, G., Calo, F., andDema, C. (2016). A Minimum Acceleration Approach for the Retrieval of Multiplatform InSAR Deformation Time Series. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(8), 3883-3898. doi:10.1109/jstars.2016.2577878
    Purkis, S., andKlemas, V. (2011). Remote Sensing and Global Environmental Change. John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK: Wiley-Blackwell.
    Shanker, P., Casu, F., Zebker, H. A., andLanari, R. (2011). Comparison of Persistent Scatterers and Small Baseline Time-Series InSAR Results: A Case Study of the San
    139
    Francisco Bay Area. IEEE Geoscience and Remote Sensing Letters, 8(4), 592-596. doi:10.1109/lgrs.2010.2095829
    Sousa, J. J., Hooper, A. J., Hanssen, R. F., Bastos, L. C., andRuiz, A. M. (2011). Persistent Scatterer InSAR: A comparison of methodologies based on a model of temporal deformation vs. spatial correlation selection criteria. Remote Sensing of Environment, 115(10), 2652-2663. doi:10.1016/j.rse.2011.05.021
    Sun, Q., Zhang, L., Ding, X. L., Hu, J., Li, Z. W., andZhu, J. J. (2015). Slope deformation prior to Zhouqu, China landslide from InSAR time series analysis. Remote Sensing of Environment, 156, 45-57. doi:10.1016/j.rse.2014.09.029
    Townsend, P. A. (2002). Estimating forest structure in wetlands using multitemporal SAR. Remote Sensing of Environment, 79, 288-304.
    U-Blox. (2020). ZED-F9P IntegrationManual_(UBX-18010802): u-blox AG.
    Varnes, D. J. (1978). Slope Movement Types and Processes. In Special Report 176: Landslides: Analysis and Control (Eds: Schuster, R.L and Krizek, R.J) (pp. 11-33). Washington D.C: Transportation and Road research board, National Academy of Science.
    Vicari, A., Famiglietti, N. A., Colangelo, G., andCecere, G. (2019). A comparison of multi temporal interferometry techniques for landslide susceptibility assessment in urban area: an example on stigliano (MT), a town of Southern of Italy. Geomatics, Natural Hazards and Risk, 10(1), 836-852. doi:10.1080/19475705.2018.1549113
    Wasowski, J., andBovenga, F. (2014). Investigating landslides and unstable slopes with satellite Multi Temporal Interferometry: Current issues and future perspectives. Engineering Geology, 174, 103-138. doi:10.1016/j.enggeo.2014.03.003
    Wempen, J. M. (2020). Application of DInSAR for short period monitoring of initial subsidence due to longwall mining in the mountain west United States. International
    140
    Journal of Mining Science and Technology, 30(1), 33-37. doi:10.1016/j.ijmst.2019.12.011
    Xiao, R., andHe, X. (2013). GPS and InSAR Time Series Analysis: Deformation Monitoring Application in a Hydraulic Engineering Resettlement Zone, Southwest China. Mathematical Problems in Engineering, 2013, 1-11. doi:10.1155/2013/601209
    Zebker, H., andVillasenor, J. (1992). Decorrelation in Interferometric Radar Echoes. IEEE Transactions on Geoscience and Remote Sensing, 30, 950-959.
    Zhang, L., Sun, Q., andHu, J. (2018). Potential of TCPInSAR in Monitoring Linear Infrastructure with a Small Dataset of SAR Images: Application of the Donghai Bridge, China. Applied Sciences, 8(3), 425. doi:10.3390/app8030425
    Zhang, Y., Meng, X. M., Dijkstra, T. A., Jordan, C. J., Chen, G., Zeng, R. Q., andNovellino, A. (2020). Forecasting the magnitude of potential landslides based on InSAR techniques. Remote Sensing of Environment, 241, 111738. doi:10.1016/j.rse.2020.111738
    Zhao, C.-y., Zhang, Q., Yang, C., andZou, W. (2011). Integration of MODIS data and Short Baseline Subset (SBAS) technique for land subsidence monitoring in Datong, China. Journal of Geodynamics, 52(1), 16-23. doi:10.1016/j.jog.2010.11.004

    QR CODE
    :::