跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳仁傑
Ren-Jie Chen
論文名稱: 藍光LED分別激發紅、綠、黃之單色螢光粉光學模擬研究與照明應用
指導教授: 孫文信
Wen-Shing Sun
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 照明與顯示科技研究所
Graduate Institute of Lighting and Display Science
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 118
中文關鍵詞: 螢光粉發光二極體吸收光譜發射光譜米氏散射
外文關鍵詞: phospohr, LED, absorption spectrum, emission spectrum, Mie scattering
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文是使用LightTools光學軟體建立螢光粉之光學模型。首先分別以配光曲線儀與積分球量測藍光LED之配光曲線與光譜;其次建立紅、綠、黃之三種螢光粉光學模型,先以雷射粒徑分析儀分別量測紅、綠、黃螢光粉粒徑分佈與光譜儀量測此三種螢光粉之激發光譜與發射光譜等參數,將藍光LED配光曲線與光譜,螢光粉粒徑分佈、激發光譜、發射光譜,分別輸入LightTools軟體內,利用蒙地卡羅 (Monte-Carlo)法來模擬米氏散射 (Mie scattering)與光線追跡。再進一步計算螢光粉模型之吸收及輻射光線之特性。並針對藍光LED分別激發紅、綠螢光粉在不同重量百分濃度下進行實驗與模擬之輻射功率光譜分佈驗證,可達到歸一化相關係數(NCC) 0.9以上。並設計藍光LED激發黃色螢光粉之白光光源在4000K色點條件下之四種封裝模型,分析其螢光粉用量及出光效率,並應用在筒燈上照明分析。


    This paper is using optical software LightTools to building a optical phosphor model.First,using light distribution curve instrument and integrating sphere to measure luminous intensity distribution curve and spectrum of blue LED, following, establish red, green ,yellow three kinds of optical phosphor model;using laser diffraction submicron partical size analyzer measure partical size distribution of phosphor,then ,using photon spectra luminous meter measure excitation and emission spectra and other spectra parameters of these three kinds of phosphor respectively.And input following data to LightTools respectively : luminous intensity distribution curve and spectrum of blue LED ,partical size distribution,excitation and emission spectrum,using Monte-Carlo method to simulate ray tracing with Mie scattering theory, advanced calculate the behavior of absorption and radiation of phosphor .In simulation and experiment ,against blue LED inspiring red ,green phosphor in different concentration verify spectrum distribution,reach normalized correlation coefficient (NCC) above 0.9. Design blue LED inspiring yellow phosphor to conform white source ,in condition color temperature 4000K, comparing four kinds of different package model,analyze its phosphor quantity and luminous efficiency,and applied in downlight illumination analysis.

    摘要 i Abstract ii 致謝 iii 目錄 iv 圖目錄 vii 表目錄 xiv 第一章 緒論 1 1-1 引言 1 1-2 LED背景 2 1-3 研究動機與目的 4 1-4 論文大綱 4 第二章 基本原理 6 2-1 引言 6 2-2 LED發光原理 6 2-3 螢光粉發光原理 8 2-4 LED能量轉換過程 11 2-5 光度學 14 2-6 色彩學 15 2-6-1 色度學 15 2-6-2 黑體輻射與色溫 18 2-7 粒子散射 23 2-7-1 米氏散射 25 2-7-2 平均自由路徑 25 第三章 螢光粉模型之建立 27 3-1 引言 27 3-2 螢光粉光源模型之建立 28 3-3 螢光粉模型之吸收光譜與激發光譜 32 3-4 螢光粉模型之量子產率 36 3-5 螢光粉模型之發射光譜 36 3-6 史塔克損耗(Stoke loss) 37 3-7 螢光粉粒子模型 39 3-8 螢光粉模型之能量轉換關係 41 第四章 LED封裝與LED燈具之驗證與分析 44 4-1 引言 44 4-2 螢光粉光學模型之驗證與分析 44 4-2-1 R-645螢光粉之光譜 49 4-2-2 R-645螢光粉不同濃度之模擬光譜與實測光譜比較 52 4-2-3 R-645螢光粉不同濃度之色座標比較 54 4-2-4 R-626螢光粉之光譜 56 4-2-5 R-626螢光粉不同濃度之模擬光譜與實測光譜比較 58 4-2-6 R-626螢光粉不同濃度之色座標比較 61 4-2-7 紅粉R-645、R-626模擬結果分析 64 4-2-8 G-529螢光粉之光譜 66 4-2-9 G-529螢光粉不同濃度之模擬光譜與實測光譜比較 68 4-2-10 G-529螢光粉不同濃度之色座標比較 70 4-2-11 G-531螢光粉之光譜 73 4-2-12 G-531螢光粉不同濃度之模擬光譜與實測光譜比較 76 4-2-13 G-531螢光粉不同濃度之色座標比較 77 4-2-14 綠粉G-529、G-531模擬結果分析 81 4-3 固定色座標下不同膠體封裝方式之影響 82 4-3-1 固定色點下不同膠體封裝型式之模擬 84 4-3-2 固定色點下不同膠體封裝型式之模擬結果與分析 86 4-4 LED燈具之模擬與應用 91 4-4-1 LED燈具之模擬結果與分析 95 第五章 結論 98 參考資料 99

    [1]經濟部能源局,「2010年能源產業技術白皮書」,民國九十九年。
    [2]D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, "Illumination with solid state lighting technology," Selected Topics in Quantum Electronics, IEEE Journal of 8, 310-320 (2002).
    [3]N. Holonyak and S. Bevacqua, "Coherent (visible) light emission from Ga (As1− xPx) junctions," Appl. Phys. Lett. 1, 82-83 (1962).
    [4]S. Nakamura, S. Pearton, and G. Fasol, "The blue laser diode: the complete story " (Springer, 2000).
    [5]Y. Shimizu, K. Sakano, Y. Noguchi, and T. Moriguchi "Light emitting device having a nitride compound semiconductor and a phosphor containing a garnet fluorescent material" (1999).
    [6]S. Nakamura, T. Mukai, and M. Senoh, "Candela‐class high‐brightness InGaN/AlGaN double‐heterostructure blue‐light‐emitting diodes," Appl. Phys. Lett. 64, 1687 (1994).
    [7]A. A. Setlur, A. M. Srivastava, H. A. Comanzo, and D. D. Doxsee "Phosphor blends for generating white light from near-UV/blue light-emitting devices " (2004).
    [8]T. F. McNulty, D. D. Doxsee, and J. W. Rose "UV reflectors and UV-based light sources having reduced UV radiation leakage incorporating the same" (2004).
    [9]A. Zukauskas, F. Ivanauskas, R. Vaicekauskas, M. S. Shur, and R. Gaska,"Optimization of multichip white solid state lighting source with four or more LEDs" in International Symposium on Optical Science and TechnologyAnonymous (International Society for Optics and Photonics, 2001).
    [10]Y. Won, H. S. Jang, K. W. Cho, Y. S. Song, D. Y. Jeon, and H. K. Kwon, "Effect of phosphor geometry on the luminous efficiency of high-power white light-emitting diodes with excellent color rendering property," Opt. Lett. 34, 1-3 (2009).
    [11]T. Treurniet and V. Lammens,"Thermal management in color variable multi-chip LED modules" in Semiconductor Thermal Measurement and Management Symposium, 2006 IEEE Twenty-Second Annual IEEEAnonymous (IEEE, 2006).
    [12]P. Deurenberg, C. Hoelen, J. Van Meurs, and J. Ansems,"Achieving color point stability in RGB multi-chip LED modules using various color control loops" in Optics & Photonics 2005Anonymous (International Society for Optics and Photonics, 2005).
    [13]H. S. Jang, W. B. Im, D. C. Lee, D. Y. Jeon, and S. S. Kim, "Enhancement of red spectral emission intensity of Y3Al5O12: Ce3 phosphor via Pr co-doping and Tb substitution for the application to white LEDs," J Lumin 126, 371-377 (2007)
    [14]C. Chen, T. Yang, C. Hsu, and C. Sun, "High-efficiency White LED Packaging with Reduced Phosphor Concentration," (2013)
    [15]C. C. Sun, C. Y. Chen, C. C. Chen, C. Y. Chiu, Y. N. Peng, Y. H. Wang, T. H. Yang, T. Y. Chung, and C. Y. Chung, "High uniformity in angular correlated-colortemperature distribution of white LEDs from 2800K to 6500K, "Opt. Express 20, 6622-6630 (2012).
    [16]田民波、呂輝宗、溫坤禮,「白光LED照明技術」,五南圖書出版社,民國一百年。
    [17]王健源、劉如熹,「白光發光二極體製作技術: 21 世紀人類的新曙光.」 全華科技圖書股份有限公司,民國九十年。
    [18]S. J. Duclos, J. Jansma, J. C. Bortscheller, and R. J. Wojnarowski "Phosphor coating with self-adjusting distance from LED chip" (2003).
    [19]R. C. Jordan, J. Bauer, and H. Oppermann,"Optimized heat transfer and homogeneous color converting for ultra high brightness LED package" in Photonics EuropeAnonymous (International Society for Optics and Photonics, 2006).
    [20]N. R. Taskar, R. N. Bhargava, J. Barone, V. Chhabra, V. Chabra, D. Dorman, A. Ekimov, S. Herko, and B. Kulkarni,"Quantum-confined-atom-based nanophosphors for solid state lighting" in Optical Science and Technology, SPIE's 48th Annual MeetingAnonymous (International Society for Optics and Photonics, 2004).
    [21]Commission Internationale de l’Eclairage,”CIE 1988 2° spectral luminous efficiency function of photopic vision,”Pub.No.86, (1988).
    [22]R. Mueller-Mach, G. O. Mueller, and M. R. Krames,"Phosphor materials and combinations for illumination-grade white pcLEDs" in Optical Science and Technology, SPIE's 48th Annual MeetingAnonymous (International Society for Optics and Photonics, 2004).
    [23]G. Wyszecki and W. S. Stiles, "Color science" (Wiley New York, 1982).
    [24]F. W. Billmeyer and M. Saltzman, "Principles of color technology. " (J. Wiley & sons, 1981).
    [25]大田登,「基礎色彩再現工程」,全華科技圖書公司,民國九十四年。
    [26]Hyperphysics, http://hyperphysics.phy-astr.gsu.edu/Hbase/atmos/blusky.html#c3
    [27]American National Standards Institute, http://www.ansi.org/.
    [28]C. S. McCamy, "Correlated color temperature as an explicit function of chromaticity coordinates," Color Research & Application 17, 142-144 (1992).
    [29]T. J. Bruno and P. D. Svoronos, CRC Handbook of spectroscopic correlation charts (CRC PressI Llc, 2006).
    [30]光學教案,http://wenku.baidu.com/view/55ebb603de80d4d8d15a4fb9.html
    [31]G. Mie, "Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen," Annalen der Physik 330, 377-445 (1908).
    [32]D. Toublanc, "Henyey-Greenstein and Mie phase functions in Monte Carlo radiative transfer computations," Appl. Opt. 35, 3270-3274 (1996).
    [33]S. A. Schafer,"Quasi-Monte Carlo methods: applications to modeling of light transport in tissue" in Proc. SPIEAnonymous , 1996).
    [34]S. J. Lee, "Analysis of light-emitting diodes by Monte Carlo photon simulation," Appl. Opt. 40, 1427-1437 (2001).
    [35]劉如熹,劉宇恆「發光二極體用氧氮螢光粉介紹」,金華科技圖書股份有限公司,民國九十五年。
    [36]Y. Zhu, N. Narendran, and Y. Gu,"Investigation of the optical properties of YAG: Ce phosphor" in Optics & PhotonicsAnonymous (International Society for Optics and Photonics, 2006).
    [37]J. R. Lakowicz, " Principles of fluorescence spectroscopy " (Springer, 2009).
    [38]C. Parker and W. Rees, "Fluorescence spectrometry. A review," Analyst 87, 83-111 (1962).
    [39]思渤科技, http://www.cybernet-ap.com.tw/zh.php
    [40]J. Chevaillier, J. Fabre, and P. Hamelin, "Forward scattered light intensities by a sphere located anywhere in a Gaussian beam," Appl. Opt. 25, 1222-1225 (1986).
    [41]J. Fox, Applied regression analysis, linear models, and related methods (SAGE Publications, Incorporated, 1997).
    [42]E. Park, J. Kim, T. Yoo, and Y. Kwon,"Bell-shaped light emitting diodes (BS-LED) with a 45 degree corner reflector, deep side-wall, and microlens" in Symposium on Integrated Optoelectronic DevicesAnonymous (International Society for Optics and Photonics, 2002).
    [43]高國峯,「GaN-LED 晶片結構對光萃取效率影響的研究」,國立中央大學,碩士論文,民國九十五年。
    [44]能源之星, http://www.energystar.gov/ia/partners/product_specs/prog ram_reqs/I ntegral_LED_Lamps_Program_Requirements.pdf

    QR CODE
    :::