跳到主要內容

簡易檢索 / 詳目顯示

研究生: 李姍妮
Sanny Li
論文名稱: 關於在Banach空間上的弱幾乎收斂的一些結果
Some Results about Weakly Almost-Convergence on Banach Spaces
指導教授: 李源泉
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
畢業學年度: 89
語文別: 中文
論文頁數: 19
中文關鍵詞: 弱幾乎收斂
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這篇論文,我們主要的目的是要研究關於弱幾乎收斂序列以σ-極限的觀點來呈現的一些基本性質。在1996年,李源泉與蕭勝彥已證明σ-極限與弱幾乎收斂是等價的觀點。
    弱幾乎收斂已經被很多數學家應用到nonexpansive函數的定點定理上,如Baillon,Bruck,Reich,Hirano,Brezis及Browder等等。
    在1975年,Baillon證明了下述的非線性ergodic定理:令C是一個Hilbert空間X的封閉凸子集。若T是從C對應到C的nonexpansive函數,即對所有在C內的元素u,v,T滿足
    ‖Tu-Tv‖ ‖u-v‖,有一個定點C內的元素y,則對所有C內的元素x,{ Tnx }會弱幾乎收斂到y。一般來說,即使X是一個Hilber空間,{ Tnx }也不會弱幾乎收斂到一個定點。Bruc和Reich把這個結果推展到X是均勻凸Banach空間有Frechet可微norm及不同的充分條件。另一方面,Baillon也證明了下列的強ergodic定理:若X是一個Hilbert空間,-C = C,及T是奇函數,則對每個C內的元素x,{ Tnx }會強幾乎收斂到T的定點y,即
    ∥ Tk+mx-y∥= 0 均勻在m 0上。
    Brezis及Browder證明即使T函數的條件消弱如下,則Baillon的結果仍然是對的:
    0是C內的元素,對C內的元素u,v
    ‖Tu+Tv‖ ‖u+v‖2+c[‖u‖2-‖Tu‖2+‖u‖2-‖Tv‖2] (1.1)
    其中c 是一個非負的常數。我們知道如果T是在Hilbert空間X的一個閉凸子集C上的一個nonexpansive函數,而且滿足(1.1)式,則T會滿足:
    對所有C內元素u,v,
    ∥Tn+iu- Tnv∥存在,均勻在i 0上。 (1.2)
    Bruck證明如果C是一個Hilbert空間X上的一個閉凸子集,T是一個滿足(1.2)式的nonexpansive函數且有一個定點,則對每個C內的元素x,{ Tnx }會強幾乎收斂到T的定點。不久,Kobayasi及Miyadera證明即使X是一個均勻凸Banach空間,Bruck的結果仍然是對的。Hirano,Takahashi及Oka證明上述T的條件可以消弱如下:
    ∥Tku- Tkv∥ ak‖u-v‖ 對所有C內的元素u,v及k 0 (1.3)
    其中ak 是一個滿足 ak =1的非負常數。在這種情形,T被稱為asymptotically nonexpansive。若T是從C對應到C的asymptotically nonexpansive奇函數,則它會滿足
    ∥Tku+ Tkv∥ ak‖u+v‖ 對所有C內的元素u,v及k 0 (1.4)
    其中ak 是一個滿足 ak =1的非負常數。
    在這篇論文的第二節,我們證明了如果N是一個實Banach空間X 的proper closed cone,f是從N對應到N的函數,在0點弱連續且滿足f(0)=0,則對每個N內的序列{ x n},滿足{ x n}的σ-極限為0且{f ( x n)}是有界的,則{f ( x n)} 的σ-極限為0。
    已知若(Ω,Σ,μ)是一個測度空間,且對所有的n=1,2,3…,fn是從Ω對應到複數值的Lebesgue可測函數,使得 fn =f a.e. 則f是可測函數。由弱幾乎收斂的定義可知,如果σ-lim fn=f a.e. 則f也是可測函數。在第三節,我們提供了一個和dominated收斂定理等價的另一個定理,敘述如下:假設(Ω,Σ,μ)是一個測度空間,且g,f,f1,f2,…都是從Ω對應到複數值的的可測函數。對所有的n=1,2,3…,
    |fn|≦g a.e. ÎL1(μ) 而且σ-lim fn (ω)=f (ω) a.e.[μ],則f是μ-可積且 = = 。
    我們很容易看出弱幾乎收斂的條件比弱收斂還弱,所以若f在點x上弱連續,則{ x n}的σ-極限為x不一定會導致{ f (x n)}的σ-極限為f (x)。在定理3.5我們證明了若x是一個複數,f是複數值函數,則f在x連續若且惟若對所有複數序列{ x n},{|x n -x|}的σ-極限為0可推至{f ( x n)}的σ-極限為f (x)。從定理3.6到序理3.9,我們研究在怎樣的充分條件下,純數x及有界數列{ x n }滿足{ x n}的σ-極限為x可以推至{ f (x n)}的σ-極限為f (x)。例如,若a為實數且{ a n }是實數有界數列,滿足{ a n }的σ-極限為a,且對所有的n 1,a n a都成立,則對所有的p=1,2…, an p = a p都成立。最後,在第四節我們給了兩個例子。


    In this paper, our primary objective is to study basic poroperties about
    weakly almost-convergent squence in terms of the conception of σ-limits. In 1996, Li and Shaw [11] showed that the conception ofσ-limit is equivalent to the weak almost-convergence (see Definition 2.3).
    The weak almost-convergence had been applied to the fixed point theory of nonexpansive mappings by many mathematicians, for example, Baillon[1], Bruck[3,4], Reich, Hirano[7], Brezis and Browder[2], etc.
    In section 2, we show that if N is a proper closed cone of a real Banach space X and if f:N->N is weak-weak continuous at 0 with f(0)=0, then for every sequence {xn} in N such thatσ-lim xn=0 and {f(xn)} is bounded implyσ-lim f(xn)=0.(see Proposition 2.9)
    It is well known that if (Ω,Σ,μ) is a measure space and
    fn:Ω->C, for n=1,2,… , are Lebesgue measurable functions such that limn fn=f a.e. then f is measurable. By the definition of weakly almost-convergence, f is also measurable if σ-lim fn = f a.e. [μ]. In section 3, we give another version of the dominated convergence theorem stated as following: Suppose (Ω,Σ,μ) is a measure space and g,f,f1, f2,… : Ω->C are measurable.
    Suppose fn≦ g (a.e.) in L1 (μ) for all n=1,2,… and
    σ-lim fn (ω) = f(ω) a.e. [μ].
    Then f is integrable .
    It is easy to see that the weakly almost convergence is weaker than the weak convergence .
    From Proposition 3.7 to Corollary 3.10, we study under which sufficient conditions at a scalar x and a bounded sequece { xn } with σ-lim xn = x we have
    σ-lim f(xn) = f(x).
    Finally, we give two examples in section 4.

    Table of Contents 摘要……………………………………………………………………… I 誌謝……………………………………………………………………… V Table of Contents……………………………………………………… VI SECTION 1 INTRODUCTION………………………………………………∙ 1 SECTION 2 BASIC PROPERTIES OF GENERALIZED σ- LIMITS ………∙ 2 SECTION 3 SCALAR-VALUED FUNCTIONS………………………………… 6 SECTION 4 EXAMPLES…………………………………………………… 13 REFERENCE………………………………………………………………… 14

    References
    [1] J.B.Baillon,Un theoreme de type ergodique pour les
    contractions nonlineaires dan un espace de Hilbert, C.R.
    Acad. Sci. Paris Ser. A-B 280(1975), A1511-A1514.
    [2] H.Brezis and F. E. Browder, Nonlinear ergodic theorems,
    Bull. Amer. Math. Soc. 82(1976), 959-961.
    [3] R.E. Bruck, A simple proof of the mean ergodic theorem for
    nonlinear contractions in Banach spaces, Israel J. Math. 32
    (1979), 107-116.
    [4] R.E.Bruck, On the almost-convergence of iterates of a
    nonexpansive mapping in Hilbert space and the structure of
    the weak w-lim set, Israel J. Math. 29(1978),1-16.
    [5] D.Van Dulst, Reflexive and superreflexive Banach spaces.
    [6] N.Hirano, Nonlinear ergodic theorems and weak convergence
    theorems, J.Math. Soc. Japan 34(1982), 36-46.
    [7] N.Hirano and W.Takahashi, Nonlinear ergodic theorems for
    nonexpansive mappings in Hilbert space, Kodai Math. J.2
    (1979), 11-25.
    [8] K.Kobayasi and I.Miyadera, On the strong convergence of
    the Cesaro means of contractions in Banach spaces, Proc.
    Japan Acad. 56A(1980),245-249.
    [9] Y.-C. Li, Weak convergence of sequences to symptotic
    centers, preprint.
    [10]Y.-C. Li and S.-Y. Shaw, Weak and strong almost-
    convergence of bounded functions at infinity.
    [11] Y.-C. Li and S.-Y. Shaw, Generalized limits and a mean
    ergodic theorem, Studia Math.121(1996), 207-219.
    [12] G.G.Lorentz, A contribution to the theory of divergent
    sequence, Acta Math. 80(1948), 167-190.
    [13] H.Oka, A nonlinear ergodic theorem for asymptotically
    nonexpansive mappings in Banach spaces, Proc. Japan Acad.
    65A(1989),284-287.
    [14] H.Oka, On the nonlinear mean ergodic theorems for
    asymptotically nonexpansive mappings in Banach spaces,
    RIMS Kyoto University, Kokyuroku 730(1990),1-20.
    [15] S.Reich, Nonlinear Ergodic Theory in Banach spaces,
    Report ANL-79-69, Argonne Nat. Lab. Springgfield, Va.,
    1979.

    QR CODE
    :::