| 研究生: |
李京樺 Ching-Hua Li |
|---|---|
| 論文名稱: |
以矽硼合金靶製作異質接面太陽能電池 Fabrication of P type Hydrogenated Silicon Thin Films Applied to Heterojunction Solar Cell Using Silicon-Boron alloy target |
| 指導教授: |
陳昇暉
Sheng-Hui Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 142 |
| 中文關鍵詞: | 氫化P矽薄膜 、異質接面太陽能電池 、矽硼合金靶 |
| 外文關鍵詞: | P type Hydrogenated Silicon Thin Films, Heterojunction Solar Cell, Silicon-Boron alloy target |
| 相關次數: | 點閱:6 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在探討以矽硼合金靶應用於濺鍍製程製作異質接面太陽能電池的可行性。濺鍍製程方式對於環境較友善,且於製程中不需要通有毒氣體,機台維護成本相對化學氣象沉積方式也來低,故本研究選用濺鍍的方式。然而濺鍍製程方式相較於化學氣象沉積方式薄膜摻雜果較差,使得薄膜電性不好,為了要改善以上情況濺鍍製程方式需要更多的摻雜才可達成。由文獻提到,濺鍍P-type矽薄膜時可於矽靶上放置硼顆粒提高薄膜的摻雜。故本實驗室團隊原先也是採用此方式幫助薄膜摻雜,應用於異質接面太陽能電池的製作。在本實驗室團隊多年來的努力之下,此製程方式有不錯的成果進展,然而此方式尚有製程穩定性、均勻性等因素考量。故本實驗團隊決定將優化的硼顆粒擺放方式應用於矽硼合金靶製作,看是否能改善以上缺點且製作出效率不錯的元件。
經過不斷修正本實驗最終使用三種不同濃度的矽硼合金靶分別鍍製P-type矽薄膜做薄膜特性的分析,以及應用於異質接面太陽能電池的製作。本研究結果以矽硼合金靶濃度(Si:wt90.7% B:wt9.3%)製作元件,元件有最佳的效率可達11.76%、開路電壓524mV、短路電流31.5 mA/cm2 與填充因子(FF)71%。
The aim of this research is the fabrication of P-type hydrogenated silicon thin films and silicon heterojunction solar cells by using silicon boron target. A sputtering process produces less environmental pollution and costs less fabrication cost than a CVD process. In addition, the sputtering process is a nontoxic process. So we use sputtering method to fabricate solar cells in our research. However, the disadvantage of PVD sputtering process is low doping efficiency resulting in poor electrical properties for P-type silicon thin film. It has been reported that to improve the doping efficiency , the more dopant such as boron grains placed on silicon target is necessary. In this research, the same method was applied to manufacture heterojunction solar cells. The heterojunction solar cells can achieve good efficiency, however there are still some problems such as the stability and the uniformity. To overcome the problems the silicon target with boron grains was replaced by silicon boron alloy to manufacture heterojunction solar cells.
In this research, three different concentrations of silicon boron alloy targets were used to deposit the P-type silicon thin films, and manufacture heterojunction solar cells. The results show that the best device performance was achieved with conversion efficiency 11.76%, open-circuit voltage 524 mV, short-circuit current 31.5 mA/cm2, and fill factor 71% by silicon boron alloy target(Si:wt90.7% B:wt9.3%).
[1.1] K. Wakisaka, M. Taguchi, T. Sawada, M. Tanaka, T. Matsuyama, T. Matsuoka, S. Tsuda, S. Nakano, Y. Kishi, Y. Kuwano, “More than 16% solar cells with a new `HIT' (doped a-Si/nondoped a-Si/crystalline Si) structure”, Photovoltaic Specialists Conference, 1991., Conference Record of the Twenty Second IEEE, 2, 887, (1991)
[1.2] M. Taguchi, A. Yano, S. Tohoda, K. Matsuyama, Y. Nakamura, T. Nishiwaki, K. Fujita, and E. Maruyama, “24.7% Record Efficiency HIT Solar Cell on Thin Silicon Wafer”, IEEE Journal of Photovoltaics, 4, 96, (2014)
[1.3] Solarserver: Panasonic achieves new record with 25.6% efficient HIT solar PV
cell. 2014年4月,取自http://www.solarserver.com/solar-magazine/solar-news/current/2014/kw15/panasonic-achieves-new-record-with-256-efficient-hit-solar-pv-cell.html
[1.4] M. H. Brodsky, R. S. Title, K. Weiser and G. D. Pettit, “Structural, optical, andelectrical properties of amorphous silicon films”, Phys. Rev. B. 1, 2632, (1970)
[1.5] T. D. Moustakas and R. Friedman, “Amorphous silicon p-i-n solar cells fabricated byreactive sputtering”, Appl. Phys. Lett. 40, 515, (1982)
[1.6] T. D. Moustakas, “Method for sputtering a PIN microcrystalline/amorphous silicon semiconductor device with the P and N-layers sputtered from boron and phosphorous heavily doped targets”, in US 4508609 A, ed, (1983)
[1.7] Y. Ohmura, M. Takahashi, M. Suzuki, N. Sakamoto, and T. Meguro, “P-type doping of hydrogenated amorphous silicon films with boron by reactive radio-frequency co-sputtering”, Phys. B Condensed Matter, 308, 257, (2001)
[1.8] M. M. de Lima, F. L. Freire, and F. C. Marques, “Boron doping of hydrogenated amorphous silicon prepared by rf-co-sputtering”, Brazilian J. Phys., 32, 379, (2002)
[1,9] W. L. Patterson, G. A. Shirn, “The Sputtering of Nickel Chromium Alloys”, J. Vac. Sci.Technol., 4, 343, (1967)
[1.10] J. C. Williams, W. R. Silnclair, S. E. Koonce, “Preparation of Thin Mullite Films”, J.Amer. Ceramic Soc, 46, 161, (1963)
[1.11] 何偉豪,「應用銅銦鎵三元合金靶材於銅銦鎵硒薄膜之研究」國立臺北科技大學製造科技研究所碩士論文,(2011)
[2.1] 馬丁格林(Martin A..Green) 著,太陽電池工作原理、技術與系統應用,曹昭陽等譯,台北,五南圖書股份有限公司,Aug 2009.
[2.2] 施敏著,半導體元件物理與製作技術,第二版,黃調元譯,台北,高立圖書有限公司,Sep 2003.
[2.3] T. Markvart, L. Castañer, Practical Handbook of Photovoltaics: Fundamentals and Applications, Elsevier, Oxford, 543, (2003)
[2.4] D. L. Staebler, C. R. Wronski, “Reversible conductivity changes in discharge-produced amorphous Si”, Appl. Phys. Lett., 31, 292, (1977)
[2.5] 國科會精密儀器發展中心,真空技術與應用,全華科技圖書股份有限公司,台北市,民國九十三年。
[2.6] J. I. Lodge, R. W. Stewart, “Studies in high frequency discharges", Canadian J. Res, 26a, 205, (1948)
[2.7] P. D. Davidse, L. I. Maissel, “Dielectric thin films through RF sputtering”, J. Appl. Phys., 37, 574, (1966)
[3.1] Y. Hishikawa, N. Nakamura, S. Tsuda, “Interference - Free Determination of the 37 Optical Absorption Coefficient and the Optical Gap of Amorphous Silicon Thin Films”, Jpn. J. Appl. Phys., 30, 1008, (1991)
[3.2] J. Tauc, Amorphous and liquid Semiconductors, Plenum Press, (1974)
[3.3] 陳柏丞,「非(微)晶矽薄膜太陽能電池之能隙結構研究」,國立中央大學光電科學研究所碩士論文, (2011)
[3.4] B. C. Smith, Fundamentals of Fourier Transform Infrared Spectroscopy, CRC press, (1996).
[3.5] HORIBA 傅立葉轉換紅外線光譜儀(FTIR)使用手冊。
[3.6] T. D. Moustakas, “Sputtered hydrogenated amorphous silicon”, J. Electro. Mater., 8, 391, (1979)
[3.7] A. A. Langford, M. L. Fleet, B. P. Nelson, W. A. Lanford, N. Maley, “Infrared absorption strength and hydrogen content of hydrogenated amorphous silicon”, Phy. Rev. B, 45, 13367, (1992)
[4.1] 王宣文,「以濺鍍法製作矽異質接面太陽能電池之硏究 : 矽薄膜特性對元件效率的影響」,國立中央大學光電科學硏究所博士論文,(2012)
[4.2] M. M. D. Lima Jr., F. C. Marques, “On the doping mechanism of boron-doped
hydrogenated amorphous silicon deposited by rf-co-sputtering”, J. Non-Cryst. Solids, 299, 605, (2002)
[4.3] 王佑庭,「以濺鍍法與表面鈍化處理製作矽異質接面太陽能電池」國立中央大學光電科學硏究所,(2013)
[5.1] L. Wang, W. Wang, J. Huang, Y. Zeng, R. Tan, W. Song,andJ. Chen, "Argon ion beam assisted magnetron sputtering deposition of boron-doped a-Si:H thin films with improved conductivity", J. Non-Crys. Solids, 378, 177, (2013)
[5.2] J. I. Pankvoe, Optical Processes in Semiconductors.(Dover, New York, 1971).
[5.3] G. D. Cody, C. R. Wronski, B. Abeles, R. B. Stephens, and B. Brooks,“Optical
characterization of amorphous silicon hydride films”, Sol. Cells, 2, 277, (1980)
[5.4] D. Jousse, E. Bustarret, A. Deneuville and J. P. Stoquert, “Rf-sputtered B-doped a-Si:H and a-Si-B-H alloys”, Phys. Rev. B., 34, 7031, (1986)
[5.5] 吳哲賢,「偏壓式磁控濺鍍法製作矽異質接面太陽能電池之研究」,國立中央大學光電科學硏究所碩士論文 (2013)
[5.6] Y. Hishikawa, N. Nakamura, S. Tsuda, S. Nakano, Y. Kishi, and Y. Kuwano, "Interference-free determination of the optical absorption coefficient and the optical gap of amorphous silicon thin films," Jpn. J. Appl Phys. Part1Reg. Pap. Short Notes & Rev. Papers, 30, 1008, (1991)
[5.7] 鄧旭軒,「以射頻磁控濺鍍法鍍製P型和N型微晶矽薄膜之硏究」,國立中央大學光電科學硏究所碩士論文,(2008)
[6.1] E. Yablonovitch, D. L. Allara, C. C. Chang, T. Gmitter, and T. B. Bright, "Unusually Low Surface-Recombination Velocity on Silicon and Germanium Surfaces", Phys. Rev. Lett, 57, 249, (1986)
[6.2] M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, "Solar cell efficiency tables (version 39)," Pro. Photovol. Res. Appl., 20, 12, (2012)