| 研究生: |
蔡顓宜 Chung-yi Tsai |
|---|---|
| 論文名稱: |
結合衛星與地面觀測氣膠輻射參數在東南亞地區氣膠種類辨識之應用 Discrimination of aerosol types with aerosol optical parameters provided by satellite and ground truth data |
| 指導教授: |
林唐煌
Tang-huang Lin |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 太空科學研究所 Graduate Institute of Space Science |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 161 |
| 中文關鍵詞: | 單次散射反照率 、散射相位函數 、生質燃燒 、沙塵暴 |
| 外文關鍵詞: | Phase function, AERONET, MODIS, SSA |
| 相關次數: | 點閱:6 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在利用MODIS衛星酬載與太陽光度計於2002-2008年間所觀測之氣膠輻射參數,對東南亞地區常見的氣膠種類進行辨識,研究範圍內的空氣污染源主要來自於沙塵暴、生質燃燒與人為污染。藉由收集並分析各AERONET測站所觀測的資料,發現粒徑較大的沙塵氣膠其A ̇ngstro ̈m exponent的觀測值(0.055)遠小於煙塵與都會氣膠,可用於沙塵氣膠之辨識。而在單次散射反照率方面,煙塵氣膠則具有最小值(0.91),相較於沙塵氣膠與都會氣膠,煙塵氣膠具有較強的吸收能力。因此,結合A ̇ngstro ̈m exponent和單次散射反照率可用來辨識出沙塵、煙塵和都市人為污染等氣膠種類。
然而MODIS的氣膠產品卻不能在低反射率地區完整地提供單次散射反照率參數,故本研究將藉由探討輻射參數間之相關性,估算研究區域的單次散射反照率或散射相位函數。由研究結果顯示,散射角介於8~15度與53~97度之間可用A ̇ngstro ̈m exponent來擬合散射相位函數。因此,本研究進一步分析在特定散射角度的相位函數應用於氣膠種類之辨識,並探討由相位函數值來辨別煙塵氣膠與都會氣膠的可行性。由統計的結果顯示在散射角在8-15間,都會氣膠的相位函數值高於煙塵氣膠, 而在50-90度之間則反之。根據此一特性即可透過衛星觀測資料應用於煙塵氣膠與都會氣膠之辨識。
The purpose of this study is to discriminate different types of aerosol over Southeast Asia by the data from MODIS instrument and AERONET during the year of 2002 to 2008. Particles of dust, smoke and pollutants(anthropogenic) are selected as the target types of aerosol in this study.
Base on the measurement of AERONET station during the occurrence of dust storm and biomass burning, the Ångström exponent (AE) of dust is about 0.054 which is smaller than smoke and man-made pollutants, indicating the radius of dust is the biggest among the three. With the strong absorption characteristic of smoke, the Single scattering albedo (SSA) of smoke (0.91) is the smallest of these types. Therefore, it is appropriate to use AE and SSA for the discrimination of aerosol types. However the SSA cannot be provided by MODIS in low-reflectivity regions, thus this study will explore the relationship between these aerosol parameters to retrieve SSA and phase function.
According to the linear relationship with AE, the phase function can be calculated by AE in specific scattering angle (e.q., 8-15 degrees and 53-97 degrees). Therefore, the discrimination of aerosol types by phase function will be analyzed in this study, and to explore the feasibility of using phase function to recognize smoke and man-made pollutants. The results show that the phase function of man-pollutants is bigger than smoke’s from 8-15 degrees, and smaller than smoke’s from 50-90 degrees. According to the result, it is appropriate to apply the phase function retrieved by MODIS for the discrimination between smoke and man-made pollutants.
參考文獻
王聖翔,2007 : 亞洲生質燃燒氣膠對區域環境與大氣輻射之衝擊及對
氣象場的反饋作用。國立中央大學大氣物理研究所博士論文,中
壢。
林和駿,林博雄及劉紹臣,2005: 台灣南北城市氣膠光學厚度的特
徵,中華民國國際氣膠科技研討會,203 – 212。
林筱雯,2003: 東亞生質燃燒的區域影響。國立台灣大學大氣科學研
究所博士論文。
林唐煌,2001: 利用衛星資料求取大氣氣溶膠光學厚度之研究與應用
。國立中央大學太空科學研究所博士論文,中壢。
吳承翰,2002 : 亞洲沙塵暴之模擬。國立中央大學大氣物理研究所
碩士論文,中壢。
賈浩平,2008:微脈衝光達及太陽光度計之應用:2005-2007年中壢地
區氣膠光學特性分析 。國立中央大學物理研究所碩士論文,中
壢。
Andreae, M. O., C. D. Jones, and P. M. Cox, 1986, Strong present-day
Aerosol cooling implies a hot future, Nature, 435, 1,187-1,190.
Brooks, N., & Legrand, M. (2000). Dust variability over northern Africa
and rainfall in the Sahel. In S. McLaren, & D. Kniveton (Eds.),Link-
ing climate change to land surface change (pp. 1 – 25). Dordrecht’
Kluwer Academic Publishers.
Christopher, D.E., and E.B. Kimberly, Survey of fires in Southeast Asia
and India during 1987, in Global Biomass Burning, 2, 663-670, MIT
Press, Cambridge, Mass., 1996.
Eck, T. F., B. N. Holben, O. Dubovik, A. Smirnov, P. Goloub, H. B.Chen
B. Chatenet, L. Gomes, X.-Y.Zhang, S. –C. Tsay, Q. Ji, D. Giles,and
I. Slutsker, 2005, Columnar aerosol optical properties at AERONET
sites in central eastern Asia and aerosol transport to the tropical mid-
Pacific, J. Gerphys. Res., 110, D06202, doi:10.1029/2004JD005274.
Fishman, J., and V.G. Brackett, The climatological distribution of
tropospheric ozone derived from satellite measurements using
version 7 Total Ozone Mapping Spectrometer and stratospheric
Aerosol and Gas Experiment data sets, J. Geophys. Res. 102,
19275-19278, 1997.
Gordon, H. R., & Wang, M. (1994). Retrieval of water-leaving radiances
and aerosol optical thickness over the oceans with SeaWiFS: A
preliminary algorithm. Applied Optics, 33(3), 443– 453
Holben, N. B., and Kaufman, Y. J., 1998. AERONET - A Federated
Instrument Network and Data Archive for Aerosol Characterization,
Remote Sens. Environ, 66:1-16.
Hsu, N. C., S. C. Tsay, M. D. King, and J. R. Herman, 2006, Deep-Blue
retrievals of Asian aerosol properties durning ACE-Asia. IEEE
Transaction on Geoscience and Remote Sensing, Vol.42,
pp.557-569
Hsu, N. C., S. C. Tsay, M. D. King, and J. R. Herman, 2004, Aerosol
properties over bright-reflecting source regions . IEEE Transaction
on Geoscience and Remote Sensing, Vol.42, pp.557-569
Intergovernmental Panel on Climate Change (IPCC), 2007, Climate Cha-
nge 2007 : Technical Summary, edited by F. Joes et al., Cambridge
Univ. Press, New York.
Jamet, C., Moulin, C., & Thiria, S. (2004). Monitoring aerosol optical
pr operties over the Mediterranean from SeaWiFS images using a
neural network inversion. Geophysical Research Letters,
31, L13107, doi:10.1029/2004GL019951.
Jamet, C., Thiria, S., Moulin, C., & Crepon, M. (2005). Use of a
neurovariational inversion for retrieving oceanic and atmospheric
constituents from ocean color imagery: A feasibility study. Journal
of Atmos pheric and Oceanic Technology, 22(4), 460– 475.
Kaufman Y. J., 1989: The Atmospheric effect on remote sensing and its
corrections. In Theory and Applications of Optical Remote Sensing,
edited by G. Asrar (New York: John Wiley & Sons), 336-428.
Kawata Y., S. Ueno, and T. Kusaka, 1988: Radiometric corr ection for
atmospheric and topographic effects on Landsat MSS ima ges. Int.
J. Remote Sensing, Vol. 9, No. 4, 729-748.
King, M. D., W. P. Menzel, Y. J. Kaufman, D. Tanre, B. C. Gao, S.
Platnick, S. A. Ackerman, L. A. Remer, R. Pincus, and P. A.
Hubanks, 2003: Cloud and Aerosol Properties, Precipitable Water,
and Profiles of Temperature and Humidity from MODIS. IEEE
Trans. Geosci. Remote Sens., 41, 442-458.
Kokhanov, A.A., Breon, F.-M., Cacciari, A., Carboni, E., Diner, D., Di
Nicolantonio, W., Grainger, R.G., Grey, W.M.F., Höller, R., Lee,
K.-H., Li, Z., North, P.R.J., Sayer, A.M., Thoms, G.E., and von Ho-
yningen-Huene, W., 2008, Aerosol remote sensing over land : a
comparison of satellite retrievals using different algorithms and
instruments, Atmospheric Research, 85, 372-394
Kurosaki, Y., and M. Mikami, Recent frequent dust events and their relat-
ion to surface wind in East Asia, Geophys. Res. Lett., 30, 14, 1736,2
003.
Lelieveld, J., Berresheim, H., Bormamnn, S., Crutzen, P. J., Dentener, F.
J.,Fisher, H., et al. (2002). Global air pollution crossroads over the
Mediterranean. Sciences, 298, 794– 799.
Li, Z., Goloub P. and Devaux, C., 2004. Aerosol polarized phase function
and single-scattering albedo retrieved from ground-based
measurem ents, Atmospheric Research 71 (2004) 233-241
Li, Z., North, P.R.J., Sayer, A.M., Thomas, G.E., and von Hoyningen
Huene, W., 2007, Aerosol remote sensing over land: a comparison
of satellite retrievals using different algorithm and instruments,
Atmospheric Research, 85, 372-394.
Lin, C. Y., Shaw C. Liu, Charles C. K. Chou , Saint-Jer Huang, Chung-
Ming Liu, Ching-Huei, Kuo , and Chea-Yuan Young, 2005, Long-
Range transport of aerosols and their impact on the air quality of
Taiwan. Atmospheric Environment, 39, 6066-6076.
Moulin, C., Gordon, H. R., Chomko, R., Banzo, V. F., & Evans, R. H.
(2001b). Atmospheric correction of ocean color imagery through
thick layers of Saharan dust. Geophyisical Research Letters, 28, 5–8.
Nobileau, D., & Antoine, D. (2005). Detection of blue-absorbing aerosols
using near-infrared and visible (ocean color) remote sensing
observations. Remote Sensing of Environment, 95, 368–387.
Perez, C., S. Nickovic, J. M. Baldasano, M. Sicard, F. Rocadenbish, and
V. E. Cachorro, 2006, A long Saharan dust event over the western
Mediterranean : Lidar, Sun Photometer observation, and regional
Dust modeling, J. Geophys. Res., 111, D15214 doi:10.1029/2005JD
006579.
Sano, I., S. Mukai, Y. Okada, B. N. Holben, S. Ohta, and T. Takamura,
2003, Optical properties of aerosols during APEX and ACE-Asia
experiments, J. Gerphys. Res., 108, D23, doi:10.1029/2002
JD003263.
Sobolev, V.V., 1972. Light Scattering in Planetary Atmospheres. Nauka,
Moscow.
Thomas, G.E., and K. Stamnes, 1999: Radiative transfer in the
atmosphere and ocean, Cambridge University Press, New York.
Wang, S.H., Lin, N. H; Chou, M. D.; Woo, J. H. (2007), Estimate of
radiative forcing of Asian biomass-burning aerosols during the
period of TRACE-P. J.Geophys.Res., 112, No. D10, D1022210
.1029/2006JD007564.
Ziemke, J.R., and S. Chandra, Comments on “Tropospheric ozone
derived from TOMS/SBUV measurements during TRACE A
” by J. Fishman et al., J. Geophys. Res., 103, 13903-13906, 1998.
Zhao, F., and Li, Z., 2007. Estimation of aerosol single scattering albedo
from solar direct spectral radiance and total broadband irradiances
measured in China , J. Geophys. Res., 112, D22S03, doi:10.1029/20
06JD0073484.