跳到主要內容

簡易檢索 / 詳目顯示

研究生: 傅世豪
Shih-Hao Fu
論文名稱: 單電子電晶體的熱電效應
Thermoelectric Effect of Single-electron Transistors
指導教授: 郭明庭
David M.-T. Kuo
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 98
語文別: 中文
論文頁數: 46
中文關鍵詞: 熱電材料單電子電晶體熱電優值量子點
外文關鍵詞: quntum dot, thermoelectric material, figure of merit, sigle-electron transistor
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文理論性地探討單顆量子點崁入具低熱導率的奈米線,此奈米線外接電極,並計算其電導、熱導、熱電係數以及熱電優值(ZT)。我們利用多能階的安德森模型(Anderson model)來模擬單量子點傳輸的情形,在庫倫阻斷區域之電流與熱流公式可經由Keldysh Green function技術的推導而得。電子聲子交互作用產生的非彈性散射、缺陷和量子點大小的變化都將會明顯得抑制ZT值。而為了增加ZT值,降低晶格熱導是非常重要的。此外我們也發現調控閘極偏壓所造成的能階偏移對系統的ZT值影響很大。


    This thesis theoretically studies the electrical conductance, thermal conductance, thermal power, and figure of merit (ZT) of a single quantum dot (QD) embedded into a nanowire with low heat conductivity connected to electrodes. The multilevel Anderson model is used to simulate this quantum dot junction system. The charge and heat currents in the Coulomb blockade regime are calculated by the Keldysh Green function technique. The ZT values are seriously suppressed by the inelastic scattering effect arising from electron-phonon interactions, defects and QD size fluctuation. In the optimization of ZT, the reduction of lattice thermal conductance is important to enhance ZT values. We find that the system ZT values are sensitive to the detuning energy, which can be controlled by the gate voltage.

    目錄 摘要 I Abstract II 誌謝 III 第一章 導論 1 1-1 熱電材料起源 1 1-2 定義熱電優值 3 1-2-1 熱電優值定義式的由來 3 1-3 研究動機 5 1-3-1 韋德曼-法朗茲定律 6 1-3-2 熱電係數 7 1-3-3 聲子熱導 7 第二章 ZT的線性分析 8 2-1 系統模型 8 2-1-1 單一能階系統格林函數 11 2-1-2 多能階系統格林函數 12 2-1-3 偏壓對量子點裸能階修正 15 2-2 定義線性區間熱電優值的各種參數 16 第三章 熱電效應的模擬 19 3-1 前言 19 3-1-1 考慮單能階與三能階系統的差異 20 3-2 熱電優值 22 3-2-1 熱電優值粗估 22 3-2-2 聲子輔助穿隧效應 23 3-2-3 絕緣層位障的影響 24 3-2-4 聲子熱導的影響 26 3-2-5 單電子電晶體的熱電優值模擬 27 3-3 調控閘極電位 29 第四章 鍺量子點單電子電晶體的熱電效應 32 4-1 參雜半導體 32 4-1-1 施體重參雜之費米能階 34 4-1-2 受體重參雜之費米能階 37 4-2 鍺量子點單電子電晶體熱電優值預測 39 第五章 結論 42 參考文獻 43

    參考文獻:
    [1.1] D.M. Rowe, Ph.D., D.Sc. THERMOELECTRICS HANDBOOK (MACRO TO NANO), CRC, New York (2006).
    [1.2] H. J. GOLDSMD, B.Sc., and R. W. DOUGL, “The use of semiconductors in thermoelectric refrigeration”, Br. J. Appl. Phys. 5, 386 (1954).
    [1.3] G. Mahan, B. Sales and J. Sharp, “Thermoelectric materials: New approaches to an old problem”, Physics Today 50, 42 (1997).
    [1.4] Yi Ma, Qing Hao, Bed Poudel, Yucheng Lan, Bo Yu, Dezhi Wang, Gang Chen, and Zhifeng Ren, “Enhanced thermoelectric figure-of-merit in p-Type nanostructured bismuth antimony tellurium alloys made from elemental chunks”, Nano Lett. 8, 2580 (2008).
    [1.5] Allon I. Hochbaum, Renkun Chen, Raul Diaz Delgado, Wenjie Liang, Erik C. Garnett, Mark Najarian, Arun Majumdar & Peidong Yang, “Enhanced thermoelectric performance of rough silicon nanowires”, Nature, 451, 163 (2008).
    [1.6] Charles Kittel, Introduction to Solid State Physics, eight edition, John Wiley & Sons, Inc(2005).
    [1.7] M. Krawiec and K. I. Wysokiński, “Thermoelectric effects in strongly interacting quantum dot coupled to ferromagnetic leads”, Phys. Rev. B 73, 075307 (2006).
    [2.1] David M.T. Kuo, “Effect of interlevel coulomb interaction on the tunneling current through a single quantum dot”, Physica E, 27, 355 (2005).
    [2.2] Y. Meir, N.S. Wingreen and P.A. Lee, “Low-temperature transport through a quantum dot: The Anderson model out of equilibrium”, Phys. Rev. Lett. 70, 2601 (1993).
    [2.3] David M.T. Kuo and Y. C. Chang, “Tunneling current spectroscopy of a nanostructure junction involving multiple energy”, Phys. Rev. Lett. 99, 086803 (2007).
    [2.4] David M. T. Kuo and Y. C. Chang, “Electron tunneling rate in quantum dots under a
    uniform electric field”, Phys. Rev. B 61, 11051 (2000).
    [2.5] David M.T. Kuo and Y. C. Chang, “Tunneling current spectroscopy of a nanostructure junction involving multiple energy”, Phys. Rev. Lett. 99, 086803 (2007)
    [2.6] Y. C. Chang and David M.T. Kuo, “Theory of charge transport in a quantum dot tunnel junction with multiple energy levels”, Phys. Rev. B 77, 245412 (2008)
    [2.7] David M.T. Kuo, “Thermoelectric properties of multiple quantum dots junction system”, Jap. J. Appl. Phys. 48, 125005 (2009).
    [3.1] Padraig Murphy, Subroto Mukerjee, and Joel Moore, “Optimal thermoelectric figure of merit of molecular junction”, Phys. Rev. B 78, 161406 (2008).
    [3.2] Joo-Hyoung Lee, Giulia A. Galli, and Jeffrey C. Grossman, “Nanoporous Si as an Efficient Thermoelectric Material”, Nano Lett. 8, 3750 (2008).
    [3.3] Yu-Shen Liu, Hao Chen, Xi-Hui Fan, and Xi-Feng Yang, “Inelastic transport through a single molecular dot in the presence of electron-electron interaction”, Phys. Rev. B 73, 115310 (2006).
    [3.4] Luis G. C. Rego and George Kirczenow, “Fractional exclusion statistics and the universal quantum of thermal conductance: A unifying approach”, Phys. Rev. B 59, 13080 (1998).
    [3.5] Ke-Qiu Chen, Wen-Xia Li,3 Wenhui Duan, Z. Shuai, and Bing-Lin Gu, “Effect of defects on the thermal conductivity in a nanowire”, Phys. Rev. B 72, 045422 (2005).
    [3.6] Pierre N. Martin, Zlatan Aksamija, Eric Pop, and Umberto Ravaioli, “Reduced thermal conductivity in nanoengineered rough Ge and GaAs nanowires”, Nano lett. 10, 1120 (2010).
    [3.7] R. Francoa, J. Silva-Valenciaa, M.S. Figueira, “Thermopower and thermal conductance for a Kondo correlated quantum dot”, Journal of Magnetism and Magnetic Materials, 320, e242 (2008).
    [3.8] David M.-T. Kuo and Yia-chung Chang, “Thermoelectric and rectification properties of quantum dot junctions”, Phys. Rev. B 81, 205321 (2010).
    [4.1] David M. T. Kuo and P. W. Li, “Tunneling current though a single germanium quantum dot”, Jap. J. Appl. Phys. 44, 6429 (2005).
    [4.2] Donald A. Neamen, Semiconductor Physics & Devices, third edition, Mc Graw-Hill, (2002).
    [4.3] H. D. Barber, “Effective mass and intrinsic concentration in silicon”, Solid-state Electronics 10, 1039 (1967).
    [4.4] G. L. Pearson and J. Bardeen, “Electrical Properties of Pure Silicon and Silicon Alloys Containing Boron and Phosphorus”, Phys. Rev. 75, 865 (1949).
    [4.5] P. W. Li, David M. T. Kuo, W. M. Liao, and W. T. Lai, “Study of tunneling currents through germanium quantum-dot single-hole and -electron transistors”, Appl. Phys. Lett. 88, 213117 (2006).
    [4.6] 柯賢文,「熱電轉換及其運用」,科學發展政策報導,5, 51 (2007).

    QR CODE
    :::