跳到主要內容

簡易檢索 / 詳目顯示

研究生: 謝佳育
Chia-Yu Hsieh
論文名稱: Kinematic Design of Double Pantographic Linkage for the Tele-Echography on Intra-Incubated Newborns
指導教授: 伊泰龍
Térence Essomba
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 77
中文關鍵詞: 機構設計縮放結構遠端超聲波技術運動學分析模擬
外文關鍵詞: Mechanism design, Pantographic architecture, Tele-echography, Kinematic analysis, Simulations
相關次數: 點閱:21下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有鑑於一些需要特別照護的新生兒被安置在新生兒保育箱中,為了監測他們的大腦發育,醫生需對嬰兒進行顱內超聲波檢查。然而,由於這種臨床護理的高重複性,採用遠程操作機器人系統的設計將能夠協助醫生完成這項任務,並且改善檢查過程中的品質。
    本研究旨在設計一個符合運動需求的機械結構,使其能夠抓取超音波探頭伸入保育箱對嬰兒進行檢查。首先擷取超音波探頭操作的運動姿態數據以分析運動需求,本研究提出一種基於兩個組合縮放聯動的機械結構。第一個縮放機構執行終端效應器圍繞遠端運動中心的線性運動。第二個提供超音波探頭圍繞另一個遠端運動中心的角運動。接著計算正向和反向運動學模型以研究機構的線性和角度運動,並執行一系列運動模擬以驗證這些模型。最後完成機構設計,計算各軸的扭力需求來選用馬達。並製作控制面板,利用Arduino程式控制馬達使機構運作。


    Some newborns requiring particular care are placed in a neonatal incubator, in order to monitor their brain development, the doctor will perform an intracranial ultrasound examination of the baby. Due to the high repetition of this clinical care, the remotely operated robotic system is designed to assist doctors with this task and improve the quality of the inspection process.
    This study aims to design a mechanical structure that meets the needs of motion, and is able to grasp the ultrasonic probe into the incubator to inspect the baby. First of all, the motion posture data of the ultrasonic probe operation is captured to analyze the kinematic requirement. A mechanical architecture based on two combined pantographic linkages is proposed. The first pantographic mechanism performs the linear positioning of the end effector around a remote center of motion. The second one provides its angular position of the ultrasound probe around another remote center of motion. The forward and inverse kinematic models are calculated to study the linear and angular positioning of the mechanism. A series of kinematic simulations are performed to validate these models. Finally, complete the mechanism design, calculate the required torque for each shaft to select the motor. Produce control panel, use the Arduino program to control the motor to actuate the mechanism.

    Chinese Abstract i English Abstract ii Acknowledgments iii Table of content iv List of Figures vi List of Table x Explanation of Symbols xi 1. Introduction 1 1-1 Vision in intracranial ultrasound examination 1 1-2 Tele-echography robotic system 4 2. Specification Analysis of the Intracranial Ultrasound examination 15 2-1 Preliminary observations 15 2-2 Motion Capture Experiments 17 2-3 Kinematic Requirements of Intra-incubated Echography 19 3. Definition of the mechanical architecture 21 3-1 Perspective of RCM mechanisms 21 3-2 Kinematic design and analysis of the mechanism 24 3-2-1 Conceptual design 24 3-2-2 Forward kinematic model 26 3-2-3 Inverse kinematic model 28 3-2-4 Velocity model 30 3-3 Kinematic simulation on the mechanism 33 3-3-1 Kinematic model verification 33 3-3-2 Intracranial examination simulations 38 4. Design of robotic manipulator prototype 40 4-1 Design method of the robotic manipulator 40 4-1-1 Design of the proximal mechanism 41 4-1-2 Design of the distal mechanism 44 4-2 Linkage deformation 45 4-3 Motor Torques Calculation 46 4-3 Mechatronic implementation of the manipulator 51 5. Conclusion 54 Reference 55 Appendix A 58

    [1] Slovis, T.L., Kuhns, L.R.: Real-time sonography of the brain through the anterior fontanelle. American Journal of Roentgenology, 136, 277-286 (1981).
    [2] Pape, K.E., Cusick, G., Blackwell, R.J., Houang, M.T.W., Sherwood, A., Thorburn R.J., Reynolds, E.O.R: Ultrasound Detection of Brain Damage in Preterm Infants. The Lancet, 313(8129), 1261-1264 (1979).
    [3] Hsieh, W.-S., Jeng, S.-F, Hung, Y.-L, Chen, P.-C, Chou, H.-C, Tsao, P.-N.: Outcome and hospital cost for infants weighing less than 500 grams: A tertiary centre experience in Taiwan. Journal of Paediatrics and Child Health, 43(9), 627-631 (2007).
    [4] T. Umeda, A. Matani, O. Oshiro, K. Chihara, “Tele-echo System: A Real-Time Telemedicine System Using Medical Ultrasound Image Sequence,” Telemedicine Journal, Vol. 6, pp. 63-67, 2000.
    [5] D.S. Martin, D.A. South, K.M. Garcia, P. Arbeille, “Ultrasound in space,” Ultrasound in Medicine & Biology, Vol. 29, No. 1, pp. 1-12, 2003.
    [6] G. Kontaxakis, S. Walter, G. Sakas, “EU-TeleInVivo: An integrated Portable Telemedicine Workstation Featuring Acquisition, Processing and Transmission over Low-Bandwidth Lines of 3D Ultrasound Volume Images,” IEEE EMBA International Conference on Information Technology Applications in Biomedicine, pp. 158-163, 2000.
    [7] S.E. Salcudean, G. Bell, S. Bachmann, W.H. Zhu, P. Abolmaesumi, P.D. Lawrence, “Robot-assisted diagnostic ultrasound-design and feasibility experiments,” Medical Image Computing and Computer-Assisted Intervention (MICCAI’99), pp. 1062-1071, 1999.
    [8] M. Mitsuishi, S. Warisawa, T. Tsuda, T. Higuchi, N. Koizumi, H. Hashizume, K. Fujiwara, “Remote Ultrasound Diagnostic system,” IEEE International Conference on Robotics & Automation (ICRA 2001), pp. 1567-1574, 2001.
    [9] A. Vilchis, J. Troccaz, P. Cinquin, K. Masuda, F. Pellissier, “A new robot architecture for tele-echography,” IEEE Transaction on Robotics and Automation, Special issue on Medical Robotics, Vol. 19, No.5, pp. 922-926, 2003.
    [10] R. Nakadate, Y. Matsunaga, J. Solis, A. Takanishi, E. Minagawa, M. Sugawara, K. Niki. “Development of a robot assisted carotid blood flow measurement system,” Mechanism and Machine Theory, Vol. 46, Issue 8, pp. 1066-1083, 2011.
    [11] F. Najafi, “Design and prototype of a robotic system for remote palpation and ultrasound imaging,” M.Sc. thesis, University of Manitoba, 2004.
    [12] F. Najafi, N. Sepehri, “A robotic wrist for remote ultrasound imaging,” Mechanism and Machine Theory, Vol. 46, Issue 8, pp. 1153-1170, 2011.
    [13] A. Gourdon, P. Poignet, G. Poisson, P. Vieyres, P. Marche, “A new robotic mechanism for medical application,” Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 33-38, 1999.
    [14] F. Courrèges, G. Poisson, P. Vieyres, A. Vilchis, “Real time exhibition of a simulated space tele-echography using an ultralight robot,” International Symposium on Artificial Intelligence, Robotics and Automation in Space, 2003.
    [15] C. Delgorge, F. Courreges, L. Bassit, C. Novales, C. Rosenberger, N. Smith-Guerin, C. Bru, R. Gilabert, M. Vannoni, G. Poisson, P. Vieyres, “A Tele-Operated Mobile Ultrasound Scanner Using a Light-Weight Robot,” IEEE Trans. Inf. Technol. Biomed, Vol. 9, No. 1, pp. 50-58, 2005.
    [16] C. Canero, N. Thomos, G. Triantafyllidis, G. Litos, M. Strintzis, “Mobile Tele-Echography: User Interface Design,” IEEE Trans. Inf. Technol. Biomed, Vol. 9, No. 1, pp. 44-49, 2005.
    [17] P. Arbeille, J. Ayoub, V. Kieffer, P. Ruiz, B. Combes, A. Coitrieux, P. Herve, S. Garnier, B. Leportz, E. Lefbvre, F. Perrotin, “Realtime tele-operated abdominal and fetal echography in 4 medical centres from one expert center using a robotic arm & ISDN or satellite link,” Proceedings of IEEE International Conference on Automation Quality and Testing Robotics, Vol. 1, pp. 45-46, 2008.
    [18] L. Nouaille, P. Vieyres and G. Poisson, “Process of Optimization for a 4 DOF Tele-echography Robot,” Robotica, Vol. 30, pp. 1131-1145, 2012.
    [19] T. Essomba, M. A. Laribi, J.P. Gazeau, S. Zeghloul, G. Poisson “Contribution to the Design of a Robotized Tele-Ultrasound System,” Frontiers of Mechanical Engineering, Vol. 7, Issue 2, pp. 135-149, 2012.
    [20] K. Ito, T. sayama, H. Iwata, S. Sugano, “A blood flow measurement robotic system: Ultrasound visual servoing algorithms under pulsation and displacement of an artery,” Journal of Robotics and Mechatronics, Vol. 24, Issue 5, pp. 773-781, 2012.
    [21] G. Zong, X. Pei, J. Yu, S. Bi, “Classification and Type Synthesis of 1-DoF Remote Center of Motion Mechanisms”, Mechanism and Machine Theory, Vol. 43 (12), pp. 1585-1595, 2008.
    [22] Ghodoussi, M., Butner, S.E., Wang, Y., 2002, “Robotic Surgery - The Transatlantic Case,” Proceedings of IEEE International Conference on Robotics and Automation, 2, pp. 1882–1888, Washington DC, USA.

    QR CODE
    :::