| 研究生: |
邱吉爾 Ji-Er QIU |
|---|---|
| 論文名稱: |
以動態離心模型試驗模擬液化地盤淺基礎建築物之受震反應 Centrifuge modeling on seismic responses of building with shallow foundations in liquefiable ground during earthquakes |
| 指導教授: |
黃俊鴻
J. H. Hwang 李崇正 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 157 |
| 中文關鍵詞: | 淺基建築物 、地工離心機 、加速度放大效應 、超額孔隙水壓 |
| 外文關鍵詞: | shallow foundation, liquefiable ground, dynamic centrifuge tests |
| 相關次數: | 點閱:24 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究設計三種不同樓層數(1、3、5層樓)重量之淺基礎建築物模型,利用中大地工離心機於50g離心力場下進行模型試驗,並藉由試體中安裝之加速度計、孔隙水壓計、土壓力計、線性差動可變變壓器(LVDT)、雷射位移計及淺基礎建築物上之應變規,分別量測各項物理量之受震歷時,探討淺基礎建築物於液化地盤上之受震反應。
研究結果顯示:(1) 砂土試體在土壤未達液化狀態時,有明顯加速度振幅放大效應,但當地盤產生液化現象時,液化層會阻隔振波的傳遞,對建築物有振動衰減之反應;(2)建築物越重時,受振後所產生的沉陷量會越大;(3)建築物之沉陷會隨輸入振動的增強而增加,且大部分的沉陷都在振動期間所產生;(4)當施加振動越大時,液化層的深度會越深,且土層液化狀態維持時間較長,超額孔隙水壓消散所需的時間也較為長久;(5)在離心模型試驗中,使用黏滯流體作為砂土試體之飽和液體,可使超額孔隙水壓的激發與消散更為真實模擬現地之情況。
This research is a project for studying post-earthquake settlement and deformation behavior of buildings with shallow foundations in liquefiable ground using dynamic centrifuge tests. In this research, a centrifugal scale-down model was specifically designed and tested at 50g. The model buildings used in the study have three different weights and in the different sand beds saturated with water and viscous fluid, respectively. Several accelerometers, pore water pressure transducers, linear variable differential transformer (LVDT), laser displacement sensor, and earth pressure cells were installed to measure the seismic response, the generation of pore water pressure in the surrounding soil during shaking and the displacement histories of the surface settlement and of the building during shaking.
According to the analysis of model test results, the following conclusions
are made: (1) In liquefiable ground, liquefied layer will barrier vibration pass to cause buildings vibrate will be decreased. (2) On post-earthquake, the heavier buildings settlement will be larger. (3) Buildings settlement increased with the input vibration increase. (4) The liquefied layer depth increased with the input vibration increases.
參考文獻
1. Stewart, D.P., Chen, Y,R., and Kutter, B.L., “Experience with the Use of Methylcellulose as a Viscous Pore Fluid in Centrifuge Models,” Geotechnical Testing Journal, Vol. 21, No. 4, pp. 365-369 (1998)
2. Liu, L., and Dobry, R., “Seismic Response of Shallow Foundation on Liquefiable Sand,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 123, No. 6, pp. 557-567 (1997).
3. Gajan, S., Kutter, B.L., Phalen, J.D., Hutchinson, T.C., and Martin, G.R., “Centrifuge modeling of load-deformation behavior of rocking shallow foundations,” Soil Dynamics and Earthquake Engineering, Vol. 25, pp. 773-783 (2005).
4. Thorel, L., Rault, G., Garnier, J., Escoffier, S., and Boura, C., “Soil-footing interaction: Building subjected to lateral cyclic loading,” 6th International Conference on Physical Modelling in Geotechnics (2006).
5. Dashti, S., Bray, J., Riemer, M., and Wilson, D., “Centrifuge Experimentation of Building Performance on Liquefied Ground,” Geotechnical Earthquake Engineering and Soil Dynamics IV (2008)
6. Gajan, S., and Kutter, B.L., “Capacity, Settlement, and Energy Dissipation of Shallow Footings Subjected to Rocking,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 134, No. 8, pp. 1129-1141(2008)
7. Dashti, S., Bray, J.D., Pestana, J.M., Riemer, M., and Wilson, D., “Mechanisms of Seismically Induced Settlement of Buildings With Sallow Foundations on Liquefiable Soil,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 136, No. 1, pp.151-164 (2010)
8. Dobry, R., and Liu, L., “Centrifuge modeling of soil liquefaction,” Tenth World Conference on Earthquake Engineering, Balkema Rotterdam (1994)
9. Liu, L., and Dobry, R., “Centrifuge study of shallow foundations on saturated sand during earthquakes,” Proc., 4th Japan-U.S. Workshop on Earthquake Resistant Design of Lifeline Facilities and Countermeasures against Soil Liquefaction, Nat. Ctr. For Earthquake Engrg. Res., State Univ. of New York at Buffalo, Buffalo, N.Y., 493-508 (1992)
10. Tokimatsu, K., and Seed, H.B., “Evaluation of settlements in sands due to earthquake shaking,” Journal of Geotechnical Engineering, ASCE, Vol. 113, No.8, pp. 861-878 (1987)
11. Bird, J.F., Bommer, J.J., Crowley, H., and Pinho, R., “Modelling liquefaction-induced building damage in earthquake loss estimation,” Soil Dynamics and Earthquake Engineering, Vol. 26, pp. 15-30 (2006)
12. Hushmand, B., Scott, R.F., and Crouse, C.B., “Centrifuge Liquefaction Tests in a Laminar Box,” Geotechnique, Vol. 38, No. 2, pp. 253-262 (1988)
13. Sharp, M.K., Dobry, R., and Abdoun, T.H., “Liquefaction Centrifuge Modeling of sand of Different Permeability,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 129, No. 12, (2003)
14. Yoshimi, Y., “Settlement of buildings on saturated sand during earthquakes,” Soils and Foundations, Vol. 17, pp. 23-28 (1977)
15. Kutter, B.L., O’Leary, L.M., Thompson, P.Y., and Lather, R., “Gravity-Scaled Tests on Blast-Induced Soil-Structure Interaction,” Journal of Geotechnical Engineering, Vol. 114, No. 4, (1988)
16. Knappett, J.A., Haigh, S.K., and Madabhushi S.P.G., “Mechanisms of failure for shallow foundations under earthquake loading,” Soil Dynamics and Earthquake Engineering, Vol. 26, pp. 91-102 (2006)
17. Gajan, S., and Kutter, B.L., “Contact Interface Model for Shallow Foundations Subjected to Combined Cyclic Loading,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 135, No. 3, pp. 407–419 (2009)
18. 中華民國大地工程學會,建築物基礎構造設計規範,中華民國大地工程學會(2001)。
19. 郭玉潔,「探討積層版試驗箱進行動態離心模型試驗之邊界效應」,碩士論文,國立中央大學土木工程學系,中壢 (2009)。
20. 鄺柏軒,「利用動態離心模型試驗模擬砂土層之剪應力與剪應變關係」,碩士論文,國立中央大學土木工程學系,中壢 (2010)。
21. 王崇儒,「利用彎曲元件探查離心砂土模型剪力波波速剖面及其工程上的應用」,碩士論文,國立中央大學土木工程學系,中壢(2010)。
22. 莊汶雅,「以動態離心模型試驗模擬沉埋隧道上浮機制」,碩士論文,國立中央大學土木工程學系,中壢(2010)。
23. 蔡晨暉,「以離心模型試驗模擬沉箱式碼頭之受震行為」,碩士論文,國立中央大學土木工程學系,中壢(2010)。
24. 凃亦峻,「位於可液化砂土層中單樁基礎受震反應的離心模擬」,碩士論文,國立中央大學土木工程學系,中壢(2011)。