跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳楷中
Kai-Jung Chen
論文名稱: LSM塗覆於固態氧化物燃料電池連接板之高溫氧化研究
The study of SOFC interconnects coated by LSM under High-temperature Oxidation
指導教授: 李雄
Shyong Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 光機電工程研究所
Graduate Institute of Opto-mechatronics Engineering
畢業學年度: 96
語文別: 中文
論文頁數: 83
中文關鍵詞: 高溫氧化連接板
外文關鍵詞: interconnect, high temperature oxidation
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文選用Fe-Cr基合金Crofer22及Zmg232為固態氧化物燃料電池(SOFC)金屬連接板材料研究材料。金屬連接板通常在長時間高溫氧化情況下,氧化層會變的太厚而使得導電性降低。因此,合金上網印La0.7Sr0.3MnO3(LSM)漿料,並經氮氣高溫燒結後可在800℃高溫操作環境下有良好的抗氧化能力。由XRD分析表面之化合物及EPMA橫截面分析可得知LSM塗層確實有效抑止Cr之氧化物的成長。由電阻量測ASR(Area Specific Resistance)可得知氧化後氧化層厚度薄的連接板具有較低的ASR電阻值,且具LSM保護之金屬連接板ASR值經長時間高溫氧化後也低於沒有受保護的金屬原材。


    The chromium-based alloys, Crofer22 and Zmg232, were selected for the interconnect of solid oxide fuel cell(SOFC) in this thesis. Under a long term and high-temperature oxidation,the oxide scale of interconnect usually become too thick so that lowering the electric conductivity of interconnects. Therefore, the alloys were coated by screen printing and sintered in nitrogen atmosphere. It showed that the LSM/alloys has good oxidation-resistant. The oxidized samples examined by X-ray diffraction (XRD) and electron probe x-ray microanalyzer (EPMA) display their ability in suppressing the growth of chromina.
    The results showed that the thinner oxide scale has the lower area specific resistance, and LSM coating alloys have lower ASR than the raw alloys.

    第一章 緒論 1 1.1前言 1 1.2燃料電池發展簡介 2 1.3研究動機與方法 2 第二章 文獻回顧 5 2.1 SOFC工作原理 5 2.2 連接板特性研究 6 2.3連接板種類 6 2.3.1 陶瓷連接板材料 7 2.3.2 金屬合金連接板材料[14,15] 9 2.4導電型氧化物 14 2.5薄膜製備方法[42] 18 2.6 金屬連接板的接觸電阻[43] 19 第三章 實驗方法與儀器設備 23 3.1實驗流程 23 3.2實驗試片製備 23 3.3 LSM膠體製作 24 3.3.1製作流程[45] 24 3.3.2 LSM粉末製作過程 25 3.3.3 LSM漿料製備 27 3.4 試片塗覆LSM漿料 28 3.5電性量測實驗 30 3.6 表面形貌及成分分析 31 3.6.1 試片表面及斷面之微觀形貌 31 3.6.2 XRD化合物分析 31 3.6.3 EPMA分析 31 3.6.4 穿透式電子顯微鏡分析 31 3.7 分析設備 32 第四章 實驗結果與討論 .36 4.1 LSM與兩種合金燒結之試片外觀 36 4.2 合金原材 38 4.2.1 Zmg232 38 4.2.2 Crofer22 43 4.3 LSM與不同合金燒結 47 4.3.1 LSM/Zmg232 47 4.3.2 LSM/Crofer22 54 4.4 電阻量測 62 4.5 LSM粉末TEM觀察 65 第五章 結論 67 參考文獻 68

    [1]台灣燃料電池資訊網, http://www.tfci.org.tw/Fc/class.asp (2001)
    [2]鄭耀宗,徐耀昇,”燃料電池技術進展的現況分析”,燃料電池論文集,經濟部能源委員會,pp15~27,(1999)
    [3]P.Kofstad and R. Bredesen, “High temperature corrosion in SOFC environments,” Solid State Ionics, vol.52, pp.69-75(1992)
    [4]陳加盟, “固態氧化物燃料電池連接板電漿鍍膜特性研究”,國立中央大學機械工程研究所碩士論文(2007)
    [5]Xuan Chen, Peggy Y. Hou, Craig P. Jacobson, Steven J. Visco, and Lutgard C. De Jonghe,“Protective coating on stainless steel interconnect for SOFCs:oxidation kinetics and electrical properties”, Solid State Ionics, Vol 176, 425-433 ,(2005)
    [6]J. H. Zhu, Y. Zhang, A. Basu, Z. G. Lu, M. Paranthaman, D. F. Lee, and,E. A. Payzant,“LaCrO -based coatings on ferritic stainless steel for solid 3 oxide fuel cell interconnect applications”, Surface and Coatings Technology, Vol 177-178,65-72,(2004)
    [7] N.Q. Minh, T. Takahashi, Science and technology of ceramic fuel cells (1995)
    [8]敖青、李德輝、孫良成、李勝利、劉偉明,“固態氧化物燃料電池鉻酸鑭連接材料研究現狀”,金屬熱處理,Vol.27 No.11,pp.8-10(2002)
    [9]孫良成、李德輝、李勝利、付貴福、敖青,周天亮,”鉻酸鑭材料熱膨脹機埋研究現狀”,工業加熱,Vol.33, No.3,pp.27-31
    [10] 韓敏芳、彭蘇萍,固體氧化物燃料電池材料與製備,科學出版社,2004年
    [11] F. Tietz, H.-P. Buchkremer, and D. Stover, ”Components manufacturing for solid oxide fuel cells”Solid State Ionic, 152/153, 373(2002)
    [12] D.B. Meadowcroft, in: T. Gray, (Ed.), International Conference on
    Strontium Containing Compounds, Atlantic Research Institute, Halifax,
    Canada, 119 (1973).
    [13] I. Yasuda and T. Hikita, J. Electrochem. Soc., 140, 1699 (1993).
    [14] K.Q. Huang, P.Y. Hou, and J.B. Goodenough, Solid State Ionics, 129, 237(2000)
    [15] T. Brylewski, M. Nanko, T. Maruyama, Solid State Ionics, 143, 131 (2001).
    [16] W. Wersing, E.Ivers-Tiffee, M. Schiessl and H.Greiner, in “Proc. Int. Symp. Solid Oxide Fuel Cells”, O. Yamamoto, M. Dokiya and H. Tagawa(Eds), Nagoya, Japan, pp.33-42 13-14, (1998)
    [17] P. Kofstad, in “Proc. 17th Risφ Int. Symp. On Materials Science: “High Temperature Electrochemistry, Ceramics and Metals”, F. Poulsen, N. Bonanos, S. Linderoth, M. Mogenson and B. Zachau-Christiansen (Eds), pp.55-66,(1996)
    [18] T. Malkow, U. V. D. Crone, A. M. Laptev, T. Koppitz, U. Breuer and W. J. Quadakkers, in “Solid Oxide Fuel Cells” (SOFC V), U. Stimming, S. C. Singhal, H. Tagawa and W. Lehnert (Eds), The Electrochemical Society Proceedings Series, Pennington, NJ, PV97-40, pp.1245, (1997)
    [19] W. J. Quadakkers, H. Greiner and W. Kock, in “Proc. of the First European Solid Oxide Fuel Cell Forum”, U. Bossel(Ed), European SOFC Forum, Dr. Ulf Bossel, Morgenacher Str. 2F, CH-5452 Oberrohrdorf, Switzerland, Vol.2, pp.525, (1994)
    [20] W.Z.Zhu and S.C.Deevi, “Development of interconnect materials for solid oxide fuel cells”, Materials Science and Engineering (A), Vol.348, pp.227-243, (2003)
    [21] T. Malkow, W. J. Quadakkers, L. Singheiser and H. Nickel, “Report Forschungszentrum Julich”, Julich, FRG, Jul-3589, ISSN 0944-2952, (1998)
    [22] 陳俊偉,國立台灣科技大學機械所碩士論文,固態氧化物燃料電池氧化鋯電解質之韌性與金屬雙極板抗氧化性研究 (2005).
    [23] S. Barison, A. DeBattisti, M. Fabrizio, S. Daolio, C. Piccirillo, Rapid commun. Mass Spectrom, 14(11), 2165-2169(2000).
    [24] S. Madhukar, S. Aggarwal, A. M. Dhote, R. Ramesh, A. Krishnan, D. Keeble, E. Poindexter, 81(8), 3543-3547 (1997).
    [25] J. Qiao, C.Y. Yang, Mater. Sci. Eng, R14, 157-202 (1995).
    [26] J. Li, Q. Huang, Z. W. Li, L. P. You, S.Y. Xu and C. K. Ong, J.Appl. Physi., 89(6), 7428-7430(2001).
    [27] J. Y. Gu, C. Kwon, M. Robson, Z. Trajanovic, K. Ghosh and R. Sharma, Appl. Phys., Lett., 70(1), 1763-1765(1997).
    [28] P. Broussard, V. Browning and V Cestone, J. Appl., Phys. 85(4), 5414-5416(1999).
    [29] J. Y. Gu, S. Ogale, M. Rajeswari, T. Venkatesan, R. Ramesh, Appl. Phys. Lett., 72(12), 1113-1115(1998).
    [30] A. Tiwari, A. Chug, C. Jin, D. Kumar and J. Narayan, Sold State Commum., 121(11), 679-682(2002).
    [31] J. Santen and G. Jonker, Physica XVI, No.7-3, 599-560(1950).
    [32] A. Chakraborty, P. S. Devi and H. S. Maiti, Mater. Lett. 20, 63-69 (1994).
    [33] M. Schiessl, E. Ivers-Tiffee and W. Wersing, 2607-2614 in Materials Science Monograths, Vol. 66D, Ceramic Today-Tomorrow’s Ceramics. Edited by P. Vincenzini. Proceeding of the 7th International Meeting on Modern Ceramics Technologies (7th CIMTEC-World Ceramics Congress 1990), Elsevier Sience, New York, (1991).
    [34] N. Zhang, W. P. Ding, Z. B. Guo, W. Zhong, D. Y. Xing, Y. W. Du, G. Li and Y. Zhang, Zeitschrift fur physik B, vol. 102, Issue 4, 461-465 (1997).
    [35] M. J. Villafuerte, S. Duhalde, M. C. Terzzoli, G. Polla, G. Leyva, L. Correra, Appl. Phys. A(Materials Science & Proceeding), vol. 69, Issue 7, 565-567(1999).
    [36] Y. S. Touloukian, Vol.12 Thermal Expansion-Metallic Elements and alloys, IFI, New York, (1970).
    [37] Y. S. Touloukian, Vol.13 Thermal Expansion-Nonmetallic Solids, IFI, New York, (1970).
    [38] J. S. Lee, H. J. Kwon, Y. W. Jeong, H. H. Kim and C.Y. Kim, J.Mater. Res., Vol.11 (1), 137-140(1996).
    [39] N. Q. Minh and T. Takehiko, Elsevier, New York, 136-137(1995).
    [40] J. Santen and G. Jonker, Physica XVI, No.7-3, 599-560(1950).
    [41] G. Jonker and J. Santen, Physica XIX, 120-130(1953).
    [42] 范明忠,國立台灣科技大學機械所碩士論文,磁控濺鍍法製備氧化物電極薄膜之研究及元件應用 (2002).
    [43] W. Z. Zhu, S. C. Deevi ,”Opportunity of metallic interconnects for solid oxide fuel cells: a status on contact resistance”, Materials Research Bulletin, 38, 6, 957-972,(2003)
    [44] B.E. Liebert, Electrical characterization of a chromium alloy interconnect materials, in: S.C. Singhal, M. Dokiya (Eds.),Proceedings of the Sixth International Symposium on Solid Oxide Fuel Cells (SOFC VI), Honolulu, Hawaii, 17–22
    , pp. 722–730.(1999)
    [45]呂駿嶸,國立台灣科技大學機械所碩士論文,固態氧化物燃料電池金屬雙極板之高溫氧化及電性研究 (2006).
    [46]P.Jian, L.Jian, H.Bing and G. Xie,”Oxidation kinetics and phase evolution of a Fe-16Cr alloy in simulated SOFC cathode atmosphere”, Journal of Power Source, (2005)

    QR CODE
    :::