跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林威廷
Wei-Ting Lin
論文名稱: 因應高速飽和水斷層泥變形之壓力閥研製
The development of pressure vessel for gouges deformed at seismic rates under water-saturated condition
指導教授: 郭力維
Li-Wei Kuo
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 地球科學學系
Department of Earth Sciences
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 114
中文關鍵詞: 岩石變形試驗壓力閥旋剪儀斷層泥飽和水閃熱
外文關鍵詞: rock deformation, pressure vessel, rotary shear experiment, fault gouge, water-saturated, flash heating
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 岩石變形試驗可以用來探討地震蘊生與擴展時的行為和機制。其中,地震斷層破裂的行為與機制,多使用可大滑移距離與高滑移速度實驗條件的旋剪儀進行岩石變形試驗。一般來說,斷層帶物質多為無內聚力岩石(斷層泥),所以探討斷層行為時,旋剪儀的岩石變形試驗也以天然的斷層泥或合成的岩石粉末為主。目前,高速變形的斷層泥變形試驗,多以鐵氟龍環的包覆為圍壓。而此種包覆,只能使用較低正向應力(約0.5到3百萬帕)進行岩石變形試驗,過程中有斷層泥溢出與化學汙染等議題。我們設計一金屬壓力閥,成功增強包覆能力,並提升可執行之正向應力(高達18 百萬帕),且實驗過程中無高嶺土(試驗材料)或水溢出的情形。實驗結果顯示,壓力閥的摩擦阻力(金屬接觸之摩擦)非常小(摩擦係數≈0.02),而且於低正向應力飽和水條件獲得之高嶺土的實驗數據與前人發表的數據相似,說明壓力閥的數據可信。另外,我們發現,分別於室濕與飽和水條件下變形之高嶺土(高速高正向應力)有迥異之摩擦行為(室濕條件有較小之破裂能、較短之弱化距離與較高之穩態摩擦係數,飽和水條件則相反)。我們推測閃熱作用於室濕條件下升溫速度快,迅速產生熔融(熱崩解)弱化並達到摩擦穩態。相反的,因為水的存在(吸熱膨脹與不可壓縮),閃熱作用於飽和水條件下被抑制,所以產生較長之弱化距離與較大破裂能。目前我們無法確定相關之弱化機制(液壓、蒸氣弱化,或是水彈性動力弱化),未來還需要相關實驗對這方面多著墨。簡而言之,新設計的壓力閥可以擴增實驗條件,並可讓我們對斷層(或山崩)變形有更多的瞭解。


    Rock deformation experiments are utilized to investigate the frictional behaviors and the associated mechanism of a fault during earthquake nucleation and ruptures. In particular, rotary shear apparatuses, characterizing with the deformation of large displacement and high velocities, are allowed to determine the fault behavior and its mechanism operated during earthquake propagation. In general, incohesive materials (fault gouges) are the dominant component within a fault core. Therefore, the studying materials, including both natural and synthetic gouges, are widely utilized with rotary shear apparatuses. So far, experiments on gouges deformed at seismic rates are confined with Teflon rings and at low normal stresses (0.5 to 3 MPa), sometimes with the issues of gouge extrusion and chemical contamination. Here we develop a metal pressure vessel which allows to deform gouges at high normal stresses (up to 18 MPa) and at seismic rates and, importantly, without gouge and/or fluid extrusion. The results show (1) the resistance of the pressure vessel (metal-to-metal contact) is extremely low (friction coefficient≈0.02) and (2) similarity to the previously published data, suggesting the data of the pressure vessel is convincing. In particular, deformed at seismic rates, significantly different frictional behaviors of kaolinite between room humidity and water-saturated conditions are observed (small fracture and short dynamic weakening distance is observed under room humidity condition, and the opposite is observed under water-saturated condition). It suggests that under room humidity flash heating can rapidly increase temperature and facilitate frictional melting (thermal decomposition) on gouges to promptly reach steady state of friction. Instead, under water-saturated condition, because water can absorb frictional heat and be incompressible, flash heating is inhibited, displaying a large fracture energy and large dynamic weakening distance. The dynamic weakening is still unclear (fluid pressurization, thermal pressurization, or elastohydrodynamic lubrication) and further experiments are required for the determination. In summary, the designed pressure vessel could expand the experimental conditions and allows to enrich the understanding of fault (landslide) deformation.

    摘要i Abstractii 致謝iii 目錄iv 圖目錄vi 一、緒論1 1.1 前言1 1.2 研究動機與目的4 二、壓力閥之研製10 2.1 第一次嘗試的壓力閥之組件與構造 10 2.2 第二次嘗試的壓力閥之組件與構造 13 2.3 第三次嘗試的壓力閥之組件與構造 15 2.4 第四次嘗試的壓力閥之組件與構造 17 2.5 第五次嘗試的壓力閥之組件與構造 19 2.6 第一代壓力閥21 三、實驗材料與研究方法23 3.1 試驗樣品-高嶺土23 3.2 壓力閥(Pressure vessel)之試體製備24 3.3 低速至高速旋剪摩擦試驗儀(LHVR)27 四、實驗結果32 4.1 純水在不同正向應力下剪應力與距離之關係32 4.2 高嶺土在飽和水條件下剪應力與距離之關係34 4.3 高嶺土在室濕條件下剪應力與距離之關係38 五、討論43 5.1 壓力閥之內摩擦力43 5.2 壓力閥試驗結果之再現性47 5.3 前人研究之比較48 5.4 高嶺土飽和水試驗(1 m/s)53 5.4.1 室濕與飽和水高嶺土摩擦峰值(μ_p)之差異56 5.4.2 室濕與飽和水高嶺土快速(1 m/s)條件下之弱化機制57 5.4.3 室濕與飽和水高嶺土摩擦穩態值(μ_ss)之差異62 六、結論與建議65 6.1 結論65 6.2 未來工作66 參考文獻67 附錄A: 扭力測定儀校正74 附錄B: 所有試驗壓密數據77 附錄C: 所有試驗數據79

    Beeler, N.M., Tullis, T.E., Blanpied, M.L., Weeks, J.D., Frictional of large displacement experimental faults. Journal of Geophysical Research, 101, B4, 8697-8715, 1996.
    Boutareaud, S., Calugaru, D.-G., Han, R., Fabbri, O., Mizoguchi, K., Tsutsumi, A., Shimamoto, T., Clay-clast aggregates: A new textural evidence for seismic fault sliding?. Geophysical Research Letters, 35, L05302, 2008.
    Boutareaud, S., Boullier, A.-M., Andreani, M., Calugaru, D.-G., Beek, P., Song, S.-R., Shimamoto, T., Clay clast aggregates in gouges: New textural evidence for seismic faulting. Journal of Geophysical Research, 115, B02408, 2010.
    Brantut N., Schubnel A., Rouzaud J.N., Brunet F., Shimamoto T., High-velocity frictional properties of a clay bearing fault gouge and implications for earthquake mechanics. Journal of Geophysical Research: Solid Earth, 113, B10401, 2008.
    Brantut, N., Han, Raehee., Shimamoto. T., Findling, N., Schubnel, A., Fast slip with inhibited temperature rise due to mineral dehydration: Evidence from experiments on gypsum. Geology, 39 (1), 59-62., 2011.
    Brodsky, E.E., Kanamori, H., Elastohydrodynamic lubrication of faults. Journal of Geophysical Research: Solid Earth, 106, B8, 16,357-16,374, 2001.
    Brodsky, E.E., Rowe, C.D., Meneghini, F., Moore, J.C., A geological fingerprint of low-viscosity fault fluids mobilized during an earthquake. Journal of Geophysical Research, 114, B01303, 2009.
    Chen, J., Niemeijer, A.R., Fokker, P.A., Vaporization of fault water during seismic slip. Journal of Geophysical Research: Solid Earth, 122, 4237-4276, 2017a.
    Chen, J., Niemeijer, A., Yao, L., Ma, S., Water vaporization promotes coseismic fluid pressurization and buffers temperature rise. Geophysical Research Letters, 44, 2177-2185, 2017b.
    Chester, J.S., Chester, F.M., Kronenberg, A.K., Fracture surface energy of the Punchbowl fault, San Andreas system. Nature, 437, 2005.
    Collettini, C., Di Stefano. G., Carpenter, B., Scarlato, P., Tesei, T., Mollo, S., Trippetta, F., Marone, C., Romeo, G., Chiaraluce, L., A novel and versatile apparatus for brittle rock deformation. International Journal of Rock Mechanics & Mining Sciences, 66, 114-123., 2014.
    Cornelio, C., Spagnuolo, E., Di Toro, G., Nielsen, S., Violay, M., Mechanical behavior of fluid-lubricated faults. Nature Communications, 1274, 2019.
    Dieterich, J., A constitutive law for rate of earthquake production and its application to earthquake clustering. Journal of Geophysical Research: Solid Earth, 99, B2, 1994.
    Di Toro, G., Niemeijer, A., Tripoli, A., Nielsen, S., Di Felice, F., Scarlato, P., Spada, G., Alessandroni, R., Romeo, G., Di Stefano, G., Smith, S., Spagnuolo, E., Mariano, S., From field geology to earthquake simulation: a new state-of-the-art tool to investigate rock friction during the seismic cycle (SHIVA). Rendiconti Lincei, 1-20., 2010.
    Di Toro, G., Han, R., Hirose, T., De Paola, N., Nielsen, S., Mizoguchi, K., Ferri, F., Cocco, M., Shimamoto, T., Fault lubrication during earthquakes. Nature, 471, 494-498. 2011.
    Faulkner, D.R., Mitchell, T.M., Jensen, E., Cembrano, J., Scaling of fault damage zones with displacement and the implications for fault growth processes. Journal of Geophysical Research: Solid Earth, 116, B05403, 2011.
    Han, R., Hirose, T., Jeong, G.Y., Ando, J., Mukoyoshi, H., Frictional melting of clayey gouge during seismic fault slip: Experimental observation and implications. Journal of Geophysical Research, 41, 2014.
    Heaton, T.H., Evidence for and implications of self-healing pulses of slip in earthquake rupture. Physics of the Earth and Planetary Interiors, 64 (1), 1-20., 1990.
    Homola. A., Israelachvili. J.N., Gee. M.L., McGuiggan. P.M., Measurement of and relation between the adhesion and friction of two surfaces separated by molecularly thin liquid films. Journal of Tribology, 111, 675-682, 1989.
    Ida, Y., Cohesive force across the tip of a longitudinal-shear crack and Griffith’s specific surface energy. Journal of Geophysical Research, 77, 1972.
    Israelachvili, J., McGuiggan, P.M., Homola, A.M., Dynamic properties of molecularly thin liquid films. Science, 240, 189-191, 1988.
    Jaeger, J.C., Friction of rocks and stability of rock slopes. Geotechnique, 21, 97-134, 1971.
    Kitajima, H., Chester, F.M., Chester, J.S., Dynamic weakening of gouge layers in high-speed shear experiments: Assessment of temperature-dependent friction, thermal pressurization, and flash heating. Journal of Geophysical Research, 116, B08309, 2011.
    Kodaira, S., No, T., Nakamura, Y., Fujiwara, T., Kaiho, Y., Miura, S., Takahashi, N., Kaneda, Y., Taira, A., Coseismic fault rupture at the trench axis during the 2011 Tohoku-oki earthquake. Nature Geoscience, 5, 646-650, 2012.
    Kohli, A.H., Goldsby, D.L., Hirth, G., Tullis, T., Flash weakening of serpentinite at near-seismic slip rates. Journal of Geophysical Research, 116, B03202, 2011.
    Kuo, L.-W., Di Felice, F., Spagnuolo, E., Di Toro, G., Song, S.-R., Aretusini, S., Li, H., Suppe, John., Si, J., Wen, C.-Y., Fault gouge graphitization as evidence of past seismic slip. Geology, 45 (11), 979-982, 2017.
    Lu, Y., Ma, S., Platt, J.D., Niemeijer, A.R., Shimamoto, T., The crucial role of temperature in high-velocity weakening of faults: Experiments on gouge using host blocks with different thermal conductivities. Geology, 44, 63-66, 2016.
    Ma, K.-F., Mori, J., Lee, S.-J., Yu, S.B., Spatial and temporal distribution of slip for the 1999 Chi-Chi, Taiwan, earthquake. Bulletin of the Seismological Society America, 91 (5), 1069-1087., 2000.
    Ma, S., Shimamoto, T., Yao, L., Togo, T., Kitajima, H., A rotary-shear low to high-velocity friction apparatus in Beijing to study rock friction at plate to seismic slip rates. Earthquake Science, 27, 469-497, 2014.
    Major, J.J., Pierson, T.C., Debris flow rheology: experimental analysis of fine-grained slurries. Water Resources Research, 28, 841-857, 1992.
    Mizoguchi, K., Hirose, T., Shimamoto. T., Fukuyama, E., Reconstruction of seismic faulting by high-velocity friction experiments: An example of the 1995 Kobe earthquake. Geophysical Research Letters, 34, L01308, 2007.
    Mizoguchi, K., Hirose, T., Shimamoto, T., Fukuyama, E., High-velocity frictional behavior and microstructure evolution of fault gouge obtained from Nojima fault, southwest Japan. Tectonophysics, 471, 285-296, 2009b.
    Moore, D.E., Lockner, D.A., Crystallographic controls on the frictional behavior of dry and water-saturated sheet structure minerals. Journal of Geophysical Research, 109, B03401. 2004.
    Nielsen, S., Spagnuolo, E., Violay, M., Smith, S., Di Toro, G., Bistacchi, A., G: Fracture energy, friction and dissipation in earthquakes. Journal of Deismology, 20, 1187-1205, 2016.
    Niemeijer, A., Marone, C., Elsworth, D., Healing of simulated fault gouges aided by pressure solution: Results from rock analogue experiments. Journal of Geophysical Research, 113, B04204, 2008.
    Niemeijer, A., Di Toro, G., Griffith, W.A., Bistacchi, A., Smith, S.A.F., Nielsen, S., Inferring earthquake physics and chemistry using an integrated field and laboratory approach. Journal of Structural Geology, 39, 2-36., 2012.
    Orellana, L.F., Scuderi, M.M., Collettini, C., Violay, M., Do scaly clays control seismicity on faulted shale rocks?. Earth and Planetary Science Letters, 488, 59-67., 2018.
    Proctor, B.P., Mitchell, T.M., Hirth, G., Goldsby, D., Zorzi, F., Platt, J.D., Di Toro, G., Dynamic weakening of serpentinite gouges and bare surfaces at seismic slip rates. Journal of Geophysical Research: Solid Earth, 119, 8107-8131, 2014.
    Rice, J.R., Heating and weakening of faults during earthquake slip. Journal of Geophysical Research: Solid Earth, 111, 2006.
    Rowe, C.D., Kirkpatrick, J.D., Brodsky, E.E., Fault rock injections record paleo-earthquakes. Earth and Planetary Science Letters, 335-336, 154-166, 2012.
    Ruina, A., Slip instability and state variable friction laws. Journal of Geophysical Research: Solid Earth, 88, B12, 10,359-10,370, 1983.
    Scholz, C. H., The mechanics of earthquakes and faulting. Cambridge, Cambridge University Press, 439, 1990.
    Shen, Z.-K., Sun, J., Zhang, P., Wan, Y., Wang, M., Burgmann, R., Zeng, Y., Gan, W., Liao, H., Wang, Q., Slip maxima at fault junctions and rupturing of barriers during the 2008 Wenchuan earthquake. Nature Geoscience, 2, 728-724, 2009.
    Shimamoto, T., Tsutsumi, A., A new rotary-shear high-speed friction testing machine its basic design and scope of research. Journal of the Tectonic Research Group of Japan, 39, 65-78 (in Japanese with English abstract). 1994.
    Sibson, R.H., Interactions between temperature and pore-fluid pressure during earthquake faulting and a mechanism for partial or total stress relief. Nature, 243, 66-68, 1973.
    Sibson, R.H., Fault rocks and fault mechanisms. Geological Society of London Journal, 133, 191-231, 1977.
    Sibson, R.H., Earthquakes and rock deformation in crustal fault zones. Annual Review of Earth and Planetary Sciences, 14, 149-175, 1986.
    Smith, S.A.F., Di Toro, G., Kim, S., Ree, J.-H., Billi, A., Spless, R., Coseismic recrystallization during shallow earthquake slip. Geology, 41 (1), 63-66., 2013.
    Smith, S.A.F., Nielsen, S., Di Toro, G., Strain localization and the onset of dynamic weakening in calcite fault gouge. Earth and Planetary Science Letters, 413, 25-36, 2015.
    Sone, H., Shimamoto, T., Frictional resistance of faults during accelerating and decelerating earthquake slip. Nature Geoscience, 2, 705-708, 2009.
    Tsutsumi, A., Shimamoto, T., Frictional properties of monzodiorite and gabbro during seismogenic fault motion. Journal Geological Society of Japan, 102, 240-248, 1996.
    Yao, L., Ma, S., Chen, J., Shimamoto, T., He, H., Flash heating and local fluid pressurization lead to rapid weakening in water-saturated fault gouges. Journal of Geophysical Research: Solid Earth, 123, 9084-9100, 2018.
    李羿葦,「不同排水速度/滑移速度條件下高嶺土之摩擦特性探討」,國立中央大學應用地質研究所,碩士論文,民國一百零六年六月。

    QR CODE
    :::