| 研究生: |
郭峻瑋 Jun-wei Guo |
|---|---|
| 論文名稱: |
6061-T6鋁合金惰性氣體鎢極電弧銲接件與真空硬銲件之疲勞裂縫成長性質研究 |
| 指導教授: |
黃俊仁
Jiun-ren Hwang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 6061-T6 、氣體鎢極電弧銲 、真空硬銲 、疲勞裂縫成長速率 、裂縫閉合 |
| 外文關鍵詞: | 6061-T6, inert gas tungsten arc welding, vacuum brazing, crack growth rate, crack closure |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究採用6061-T6熱處理型鋁合金,分別以惰性氣體鎢極電弧銲接(俗稱TIG銲)與真空硬銲進行對接銲接,探討兩種不同製程的鋁合金對接銲件的疲勞裂縫成長速率與裂縫閉合效應。
研究結果顯示兩種銲接試片在銲道上的壽命皆較其它位置低。TIG銲件之銲道由於內部具有銲接缺陷,造成裂縫成長速率高於母材及熱影響區。若與母材相比,熱影響區在 ∆K<13 MPa√m 時有最低的裂縫成長速率;而當 ∆K>13 MPa√m 後,熱影響區的裂縫成長速率高於母材。真空硬銲銲道試片,在∆K<13 MPa√m時與母材有相似的裂縫成長速率,當 ∆K>13 MPa√m 後,裂縫成長速率急遽上升,至 ∆K≅15 MPa√m 破斷。觀察裂縫破斷面可知,真空硬銲銲件的銲道在裂縫成長前期是沿著鄰近銲道的母材區進行,但隨著∆K值增加,裂縫成長由母材區遷移到銲道區成長。裂縫閉合實驗結果,TIG銲的閉合應力並無顯著差別,真空硬銲的銲道會隨著裂縫長度的增長,而使裂縫閉合應力下降。
This study investigates the fatigue crack growth rate and crack closure of 6061 aluminum alloy butt joints welded by tungsten inert gas welding (TIG) and vacuum brazing (VB).
For TIG weldments, with the influence of weld defects, the crack growth rate of weld bead is higher than those of heat affected zone and base metal. The crack growth rate of heat affected zone is the lowest when ΔK is below 13 MPa√m. The crack growth rate of heat affected zone is higher than that of base metal when ΔK is above 13 MPa√m. In terms of VB, the crack growth rate of braze bead is nearly as same as that of base metal when ΔK is below 13 MPa√m. When ΔK exceeds 13 MPa√m, the crack growth rate of braze bead rises rapidly. The observation of SEM images showed that crack initiated at the base metal. When the applied load increased, the crack growth transfered from base metal to braze bead. The experimental results of crack closure test showed that there were no significant difference in crack closure stress for TIG welding. In braze bead, the crack closure stress decreased with increasing crack length.
[1] H. O. Fuchs, “Metal Fatigue in Engineering,” John-Wiley & Sons Inc. 1980
[2] https://en.wikipedia.org/wiki/List_of_accidents_and_incidents_involving_commercial_aircraft
[3] 黃振賢,「機械材料」,文晶圖書股份有限公司,第311~331頁,民國69年。
[4] http://www.aluminum.org/
[5] 趙光榮,「氬氣鎢極電銲能力本位訓練教材_鋁板平銲機本銲道銲接」,行政院勞工委員會職業訓練局,民國90年。
[6] 劉茂賢,吳清勳,”真空熱處理及硬銲之原理與發展應用,”工業材料, Vol.205, 2004, pp.168-173.
[7] 趙勇,付娟,張培磊,嚴堅,蔣成禹,”銲接方法對6061鋁合金接頭性能影響的研究,” 江蘇科技大學學報, Vol.20, No.1, Feb. 2006.
[8] 車洪豔,朱亮,陳劍虹,徐文福,呂先鋒,” 6061鋁合金平板對銲接接頭拉伸性能研究,” 蘭州理工大學學報, Vol.34, No.2, Apr. 2008.
[9] 廖盛如,「6061 鋁合金真空硬銲接合面之機械性能與氣密性」,國立中興大學,碩士論文,民國96年。
[10] J. A. Vargas, ”Analysis of heat input effect on the mechanical properties of Al-6061-T6 alloy weld joints,” Materials and Design, Vol.52, 2013, pp. 556-564
[11] A. A. Griffith, “The Phenomena of Rupture and Flow in Solids,” Phil. Trans. Roy. Soc. Of London, A221, pp.163-197.
[12] G. R. Irwin, "Fracture Dynamics Fracturing of Metals," American Society for Metals, Cleveland, OH, 1949, pp.147-166.
[13] G. R. Irwin, “Analysis of Stresses and Strains Near The End of a Crack Traversing a Plate,” Journal of Applied Mechanics, Trans. of ASME, Vol. E24, 1957, pp.361-364.
[14] E. Zahavi, “FATIGUE DESIGN : Life Expectancy of Machine Parts,” CRC Press. 1996.
[15] P. C. Paris, F. Erdogan, “A Critical Analysis of Crack Propagation Laws,” journal of basic engineering, Trans. ASME, D85, pp.528-534.
[16] “Standard Test Method for Measurement of Fatigue Crack Growth Rates”, ASTM E647-11.
[17] U. Yoshihiko, S. Atsushi, T. Naotoshi, K. Yoshitaka, J. Masahiro, ”等軸α/針状α混合組織Ti-6Al-4V合金の一定振幅荷重および非定常変動荷重下における疲労き裂進展挙動” 日本機械学会論文集, 71巻708号, 2005.8.
[18] B.F. Jogi, ” Some studies on fatigue crack growth rate of aluminum alloy 6061,” journal of materials processing technology, Vol.201, 2008, pp.380-384
[19] R.R. Ambriz, G. Mesmacque, A. Benhamena, A. Ruiz, A. Amrouche, V. H. López, “Fatigue crack growth under a constant amplitude loading of Al-6061-T6 welds obtained by modified indirect electric arc technique”
Science and Technology of Welding & Joining • JULY 2010
[20] A.A. Aguilar Espinosa, N.A. Fellows, J.F. Durodola, “Experimental measurement of crack opening and closure loads for 6082-T6 aluminium subjected to periodic single and block overloads and underloads,” International Journal of Fatigue, Vol.47, 2013, pp.71–82.
[21] G. D’Urso, “Fatigue crack growth in the welding nugget of FSW joints of a 6060 aluminum alloy,” Journal of Materials Processing Technology, Vol.214, 2014, pp.2075-2084
[22] S. Li, Y. Kang, G. Zhu, S. Kuang, “Microstructure and fatigue crack growth behavior in tungsten inert gas welded DP780 dual-phase steel,” Materials and Design, Vol. 85, 2015, pp.180–189.
[23] W. Elber, “Fatigue Crack-closure under Cyclic Tension”, Engineering Fracture Mechanics, Vol. 2, 1970, pp. 37-45.
[24] S. Suresh, Fatigue of Materials, Cambridge University Press, 1991, pp. 222-271.
[25] 黃國彰,「AISI304不鏽鋼受擴孔壓痕及點銲作用下之疲勞裂縫成長遲滯研究」,國立高雄應用科技大學,碩士論文,民國96年。
[26] Y. Yamada, “Crack-closure behavior of 2324-T39 aluminum alloy near-threshold conditions for high load ratio and constant Kmax tests,” journal of materials processing technology, vol. 201, 2008, pp.380-384
[27] M. Lugo, S.R. Daniewicz, J.C. Newman Jr, “A mechanics based study of crack closure measurement techniques under constant amplitude loading,” International Journal of Fatigue, Vol.33, 2011, pp.186–193.
[28] C.Y. Kim, J.M. Choi, J.H. Song, “Fatigue crack growth and closure behavior under random loadings in 7475-T7351 aluminum alloy,” International Journal of Fatigue, Vol.47, 2013, pp. 196–204.
[29] 黃俊仁,林暉,莊信祥,徐逢邑,「鋁合金銲接件疲勞壽命評估之研究」,國科會專題研究計畫,成果報告,民國102年
[30] “Standard Practice for Microetching Metals and Alloys”, ASTM E407-99.