跳到主要內容

簡易檢索 / 詳目顯示

研究生: 邱繼賢
Chi-Hsien Chiu
論文名稱: Early Detection of Mouse Liver Fibrosis Using Segmentation of MR Images with Confusion Component Removing and Morphology
指導教授: 黃楓南
Feng-Nan Hwang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 54
中文關鍵詞: 肝纖維化
外文關鍵詞: Liver Fibrosis
相關次數: 點閱:20下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 慢性肝病常會進行到不可逆的肝硬化階段,但是在肝纖維化的早期,其病勢是可逆的。
    雖然侵入式診斷是目前評斷肝纖維化的黃金標準,除了成本較為高昂且會造成病人的
    痛苦且帶有些微機率的後遺症。所以我們希望能建立一套簡單但可靠的非侵入式評分
    方法,並期望能判別患者肝纖維化的程度。主要影像是使用小鼠的MR 影像,利用
    MR 影像的T1 和T1ct (Primovist) 各自的成像差異加上K-means 法把肝影像分割出來。我們架構的模型主要使用Support vector machine (SVM) 去進行分類。透過觀察,我們使用simple connected domain 的機率當作其中的一個特徵,並用孔隙率當作第二個特徵。由於SVM 本身是Binary 分類器,所以我們選用One-Against-One 策略,使用多個Binary 分類器去達到我們想要的分類效果。由於資料組數較少,因此我們選用K-Fold 交錯驗證法來增強結果的可信度。單獨使用孔隙率當作特徵所得到的模型準確率大約有80%,根據ROC 曲線分析,可以得出其AUROC 分數大約為0.7 ∼ 0.8 之間,但如果加上simple connected domain 作為第二特徵,訓練出來的模型準確率可達 90%,AUROC 分數可達將近0.9,代表其判斷結果是可信的。


    Chronic liver disease often progresses to the irreversible stage of cirrhosis, but in the early
    stage of liver fibrosis, its disease is reversible. Although the invasive diagnosis is currently
    the gold standard for judging liver fibrosis, in addition to the high cost and the painful
    sequelae of the patient with some micro-probability. Therefore, we hope to establish a
    simple but reliable non-invasive scoring method and hope to determine the degree of liver
    fibrosis in patients. The main image is the MR image of the mouse. The liver image is
    segmented using the respective imaging differences of T1 and T1ct (Primovist) of MRI
    plus the K-means method. The model of our architecture mainly uses a support vector
    machine (SVM) to classify. Through our observation, we use the degree of the simple
    connected domain as one of the features, and the porosity as the second feature. Since
    SVM is a binary classifier, we choose the one-against-one mode and use multiple binary
    classifiers to achieve the classification effect we want. Due to the small number of data
    sets, we choose K-Fold cross-validation to enhance the credibility of the results. The
    accuracy of the model obtained by using porosity alone as a feature is only about 80%.
    According to the ROC curve analysis, it can be concluded that its AUROC score is about
    0.7∼0.8, but if the simple connected domain is added as the second feature, the accuracy
    of the trained model can reach 90%, and the AUROC score can reach close to 0.9, which means that the judgment result is credible.

    Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 Segmented morphology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1 Images segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Methodology of Morphology . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2.1 Basic Morphological Operators . . . . . . . . . . . . . . . . . . . . 5 3 Proposed diagnosis technique . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.1 Feature extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.1.1 Feature 1 : Simple connected domain . . . . . . . . . . . . . . . . 10 3.1.2 Feature 2 : Porosity . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.2 Cross validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.3 Classification Method : Support Vector Machine (SVM) . . . . . . . . . . 16 3.3.1 One-Against-One (OAO) . . . . . . . . . . . . . . . . . . . . . . . . 17 4 Diagnosis results and discussions . . . . . . . . . . . . . . . . . . . . . . . . 19 4.1 Data information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.2 Diagnosis processed result . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.3 Feature 1 & Feature 2 results . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.3.1 Feature 1 : Simple connected domain . . . . . . . . . . . . . . . . . 21 4.3.2 Feature 2 : Porosity . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.4 Statistical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.4.1 ROC Curve & AUROC Analysis . . . . . . . . . . . . . . . . . . . 26 5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

    [1] J. Axnick. β1 integrin-dependent mechanotransduction induces angiocrine signaling
    required to promote liver growth and survival. PhD thesis, 2019.
    [2] J.W. Chen. Exploring effects of optimizer selection and their hyperparameter tuning
    on performance of deep neural networks for image recognition. Master’s thesis,
    National Central University, 2019.
    [3] U.R. Kamalov A.V. Kvostikov, A.S. Krylov. Ultrasound image texture analysis for
    liver fibrosis stage diagnostics. Programming and Computer Software, 41:273–278,
    2015.
    [4] G.N Hounsfield. Computerized transverse axial scanning (tomography): Part 1.
    description of system. The British Journal of Radiology, 46:1016–1022, 1973.
    [5] A. Kumar, D. Welti, and R.P Ernst. Imaging of macroscopic objects by NMR Fourier
    zeugmatography. Naturwissenschaften, 62:34–34, 1975.
    [6] S.C. Faria, K. Ganesan, I. Mwangi, M. Shiehmorteza, B. Viamonte, S. Mazhar,
    M. Peterson, Y. Kono, C. Santillan, G. Casola, et al. MR imaging of liver fibrosis:
    current state of the art. Radiographics, 29:1615–1635, 2009.
    [7] L. Petitclerc, G. Gilbert, B.N. Nguyen, and A. Tang. Liver fibrosis quantification by
    magnetic resonance imaging. Topics in Magnetic Resonance Imaging, 26:229, 2017.
    [8] K. Sandrasegaran, F.M. Akisik, C. Lin, B. Tahir, J. Rajan, R. Saxena, and A.M.
    Aisen. Value of diffusion-weighted MRI for assessing liver fibrosis and cirrhosis.
    American Journal of Roentgenology, 193:1556–1560, 2009.
    [9] T.L. Harada, K. Saito, Y. Araki, J. Matsubayashi, T. Nagao, K. Sugimoto, and
    K. Tokuuye. Prediction of high-stage liver fibrosis using adc value on diffusionweighted
    imaging and quantitative enhancement ratio at the hepatobiliary phase of
    gd-eob-dtpa–enhanced MRI at 1.5 t. Acta Radiologica, 59:509–516, 2018.
    [10] C.H. Thng and D.J. .and Koh D.M. San Koh, T.and Collins. Perfusion magnetic
    resonance imaging of the liver. World Journal of Gastroenterology: WJG, 16:1598,
    2010.
    [11] M. Yin, K.J. Glaser, J.A. Talwalkar, J. Chen, A. Manduca, and R.L. Ehman. Hepatic
    MR elastography: clinical performance in a series of 1377 consecutive examinations.
    Radiology, 278:114–124, 2016.
    [12] H. Morisaka, U. Motosugi, S. Ichikawa, T. Nakazawa, T. Kondo, S. Funayama,
    M. Matsuda, T. Ichikawa, and H. Onishi. Magnetic resonance elastography is as
    accurate as liver biopsy for liver fibrosis staging. Journal of Magnetic Resonance
    Imaging, 47:1268–1275, 2018.
    [13] T. Yokoo, T. Wolfson, K. Iwaisako, M.R. Peterson, H. Mani, Z. Goodman,
    C. Changchien, M.S. Middleton, A.C. Gamst, S.M. Mazhar, et al. Evaluation of
    liver fibrosis using texture analysis on combined-contrast-enhanced magnetic resonance
    images at 3.0 t. BioMed research international, 2015.
    [14] Y. Yu, J. Wang, C.W. Ng, Y. Ma, S. Mo, E.L.S. Fong, J. Xing, Z. Song, Y. Xie,
    K. Si, et al. Deep learning enables automated scoring of liver fibrosis stages. Scientific
    reports, 8:1–10, 2018.
    [15] T.H. Kim, J.E. Kim, J.H. Ryu, and C.W. Jeong. Development of liver surface
    nodularity quantification program and its clinical application in nonalcoholic fatty
    liver disease. Scientific reportz, 9:1–10, 2019.
    [16] W.G. Bradley D.D. Stark. Magnetic resonance imaging; the cv mosby company: St.
    Louis, Washington DC, Toronto, pages 161–181, 1988.
    [17] A.D. McLachlan A. Carrington. Introduction to magnetic resonance: with applications
    to chemistry and chemical physics. 1967.
    [18] Y.T. Juan. Three-dimensional geometry reconstruction of mouse liver from MR
    images using k-means method with confusion component removing. Master’s thesis,
    National Central University, 2019.
    [19] M. Singh, P. Patel, D. Khosla, and T. Kim. Segmentation of functional MRI by
    k-means clustering. IEEE Transactions on Nuclear Science, 43:2030–2036, 1996.
    [20] H.P. Ng, S.H. Ong, K.W.C. Foong, P.S. Goh, and W.L. Nowinski. Medical image
    segmentation using k-means clustering and improved watershed algorithm. In 2006
    IEEE southwest symposium on image analysis and interpretation, pages 61–65. IEEE,
    2006.
    [21] K.S. Sindhushree, T.R. Manjula, and K. Ramesha. Detection and 3d reconstruction
    of brain tumor from brain MR images. International Journal of Engineering Research
    & Technology (IJERT), 2:528–534, 2013.
    [22] R.C. Gonzalez, R.E. Woods, and S.L. Eddins. Digital image processing using MATLAB.
    Pearson Education India, 2004.
    [23] P. Refaeilzadeh, L. Tang, and H. Liu. Cross-validation. Encyclopedia of database
    systems, 5:532–538, 2009.
    [24] J.D. Rodriguez, A. Perez, and J.A. Lozano. Sensitivity analysis of k-fold cross validation
    in prediction error estimation. IEEE transactions on pattern analysis and
    machine intelligence, 32:569–575, 2009.
    30

    QR CODE
    :::