跳到主要內容

簡易檢索 / 詳目顯示

研究生: 簡勤益
Chin-i Chien
論文名稱: Glycyl-tRNA synthetase 的演化與功能
Evolution and function of glycyl-tRNA synthetase
指導教授: 王健家
Chien-chia Wang
口試委員:
學位類別: 博士
Doctor
系所名稱: 生醫理工學院 - 生命科學系
Department of Life Science
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 94
中文關鍵詞: 胺醯-tRNA合成酶跨物種援救鑑別基礎雙重功能的演化蛋白質合成轉譯作用
外文關鍵詞: aminoacyl-tRNA synthetase, cross-species rescue, discriminator base, dual functional, evolution, protein synthesis, translation
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Glycyl-tRNA synthetase (GlyRS) 的功能是將Glycine接到相對應的tRNAGly,這個酵素主要辦認tRNAGly上的discriminator base (N73)、anticodon (C35, C36) 和acceptor stem 的前三個鹼基配對 (1:72, 2:71 和3:70)。其中anticodon (C35, C36) 是最重要的辨認區位。自然界當中,GlyRS存在這兩種型式,一種是α2 type的二聚體型式,另一種則是α2β2 type的四聚體型式;原核及真核生物的tRNAGly上discriminator base (N73) 是不相同的,在原核生物N73是U,而在真核生物N73是A。酵母菌只有一個GlyRS基因,卻同時提供粒線體及細胞質功能,而且粒腺體及細胞質tRNAGly的N73都是A。第一部分,我們發現人類及阿拉伯芥之細胞質的GlyRS (α2 type) 可以取代酵母菌粒線體及細胞質的GlyRS功能 ,可是大腸桿菌的GlyRS (α2β2 type) 和阿拉伯芥胞器的 GlyRS [(αβ)2 type] 卻不能。然而將大腸桿菌GlyRS的α及β次單元融合,形成的αβ融合蛋白質可以取代酵母菌粒腺體的GlyRS功能,這種不同構型的GlyRS互相取代是一個非常罕見的現象。第二部分,線蟲的粒線體tRNAGly缺少T-arm,我們將酵母菌和線蟲的GlyRS (α2 type) 做胺基酸序列比對發現:線蟲GlyRS在胺基端多出一段胺基酸序列,我們想要知道這個額外的胺基酸序列是否與線蟲GlyRS辨認獨特的 tRNAGly有關,結果發現線蟲的細胞質及粒線體GlyRS都可以取代酵母菌GlyRS功能,然而刪除其WHEP domain 就喪失這個互補功能。胺醯化實驗顯示:純化的線蟲細胞質及粒線體GlyRS都能有效率地辨認線蟲細胞質tRNAGly,然而只有粒線體GlyRS可以辨認線蟲粒線體tRNAGly。我們的結果顯示:線蟲粒線體GlyRS胺基酸片段1-20是mitochondrial targeting signal,胺基酸片段21-64可能與粒線體tRNAGly辨認有關,胺基酸片段65-130可能是”非專一性tRNA結合區位”。


    Glycyl-tRNA synthetase (GlyRS) is an enzyme that specifically binds tRNAGly and catalyzes the synthesis of Gly-tRNAGly. The identity elements of tRNAGly for GlyRS include the discriminator base (N73), the last two nucleotides of the anticodon (C35, C36), and the acceptor stem region (1:72, 2:71 and 3:70). C35 and C36 are the most important elements for GlyRS recognition. Two oligomeric types of GlyRS are found in nature: a α2 type and a α2β2 type. The former has been identified in all three kingdoms of life and often pairs with tRNAGly that carries an A73 discriminator base, while the latter is found only in bacteria and chloroplasts and is almost always coupled with tRNAGly that contains U73. In the yeast Saccharomyces cerevisiae, a single GlyRS gene, GRS1, provides both the cytoplasmic and mitochondrial functions, and tRNAGly isoacceptors in both compartments possess A73. In the first part of this dissertation, we showed that Homo sapiens and Arabidopsis thaliana cytoplasmic GlyRSs (both α2-type enzymes) can rescue both the cytoplasmic and mitochondrial defects of a yeast grs1- strain, while Escherichia coli GlyRS (a α2β2-type enzyme) and A. thaliana organellar GlyRS [a (αβ)2-type enzyme] failed to rescue either defect of the yeast mull allele. However, a head-to-tail αβ fusion of E. coli GlyRS effectively supported the mitochondrial function. Our study suggests that a α2-type eukaryotic GlyRS may be functionally substituted with a α2β2-type bacterial cognate enzyme despite their remote evolutionary relationships. In the second part, we showed that mitochondrial tRNAGly of Caenorhabditis elegans lacks the entire T-arm. Sequence alignment showed that C. elegans GlyRS contains an N-terminal extension that is absent from its yeast counterpart. Our results showed that cytoplasmic and mitochondrial GlyRS isoforms effectively rescued a yeast GRS1 knockout strain. However, deletion of the N-terminal extension (WHEP domain) from the C. elegans GlyRS eliminated its cross-species rescue activity. Aminoacylation assays showed that both cytoplasmic and mitochondrial C. elegans GlyRS isoforms can charge the cytoplasmic tRNAGly isoacceptor. However, only the mitochondrial isoform can charge the mitochondrial tRNAGly isoacceptor. Our results suggested that the N-terminal peptide containing residues 1-20 is a mitochondrial targeting signal, peptide containing residues 21-64 is a specific mitochondrial tRNAGly recognition element, and peptide containing residues 65-130 is a nonspecific tRNA binding element.

    Table of Contents 中文摘要.i Abstract.ii Declaration.iii 誌謝.iv Tables of Contents.v List of Figures.vii List of Supporting Figures.viii List of Tables.ix Appendixes.x Abbreviations.xi Chapter I - Functional substitution of a eukaryotic glycyl-tRNA synthetase with an evolutionarily unrelated bacterial cognate enzyme.1 Abstract.2 Introduction.3 Materials and Methods.5 Results.8 Discussion.14 Charpter II - Analysis of the N-terminal appended domain of C. elegans glycyl-tRNA synthetase.18 Abstract.19 Introduction.20 Materials and Methods.21 Results.24 Discussion.31 References.35 List of Figures Figure 1. GlyRSs and tRNAsGly.39 Figure 2. Cross-species rescue assays for bacterial GlyRSs.40 Figure 3. Cross-species rescue assays for eukaryotic GlyRSs.42 Figure 4. Cellular distributions of human GlyRS.44 Figure 5. Aminoacylation activities of GlyRSs.45 Figure 6. Comparison of C. elegans GlyRS and various eukaryotic GlyRSs.47 Figure 7. Complementation assays for wild type and truncated form of C. elegans GlyRS.48 Figure 8. Comparison of yeast and C. elegans cytoplasmic and mitochondrial tRNAGly isoacceptors.50 Figure 9. Aminoacylation activities of wild type and truncated form of C. elegans GlyRS.51 Figure 10. Gel mobility-shift assay for the tRNA binding activities of the WHEP domain and cytosolic form and the WHEP-domain-deleted form C. elegans GlyRS.53 Figure 11. Converting EcGlnRS into a functional enzyme.55 Figure 12. Rescuing a defective C. elegans GlyRS mutant with Arc1p and Ad of yeast GlnRS.56 List of Supporting Figures Figure S1. Oligomeric structures of GlyRSs.46 List of Tables Table 1. Oligomeric stryctures of glycyl-tRNA synthetase and the discriminator base N73 of tRNAsGly.57 Appendixes Appendix 1. Yeast GRS1 homologues and their rescue activities.58 Appendix 2. Sequence comparison between GlyRS1 and GlyRS2.60 Appendix 3. Rescue activities of V. polyspora GRS2 and its derivatives.61 Appendix 4. Stress-inducible expression of V. polyspora GRS2.63 Appendix 5. Degradation of V. polyspora GlyRS1 and GlyRS2 in vivo.64 Appendix 6. Aminoacylation activities of V. polyspora GlyRS1 and GlyRS2 in vitro.65 Primer List.66 Plasmid List.70

    1. Schimmel, P. R., and Soll, D. (1979) Aminoacyl-tRNA synthetases: general features and recognition of transfer RNAs. Annu Rev Biochem 48, 601-648
    2. Carter, C. W., Jr. (1993) Cognition, mechanism, and evolutionary relationships in aminoacyl-tRNA synthetases. Annu Rev Biochem 62, 715-748
    3. Giege, R., Sissler, M., and Florentz, C. (1998) Universal rules and idiosyncratic features in tRNA identity. Nucleic Acids Res 26, 5017-5035
    4. Tang, H. L., Yeh, L. S., Chen, N. K., Ripmaster, T., Schimmel, P., and Wang, C. C. (2004) Translation of a yeast mitochondrial tRNA synthetase initiated at redundant non-AUG codons. J Biol Chem 279, 49656-49663
    5. Chang, K. J., and Wang, C. C. (2004) Translation initiation from a naturally occurring non-AUG codon in Saccharomyces cerevisiae. J Biol Chem 279, 13778-13785
    6. Natsoulis, G., Hilger, F., and Fink, G. R. (1986) The HTS1 gene encodes both the cytoplasmic and mitochondrial histidine tRNA synthetases of S. cerevisiae. Cell 46, 235-243
    7. Chatton, B., Walter, P., Ebel, J. P., Lacroute, F., and Fasiolo, F. (1988) The yeast VAS1 gene encodes both mitochondrial and cytoplasmic valyl-tRNA synthetases. J Biol Chem 263, 52-57
    8. Chang, C. P., Tseng, Y. K., Ko, C. Y., and Wang, C. C. (2012) Alanyl-tRNA synthetase genes of Vanderwaltozyma polyspora arose from duplication of a dual-functional predecessor of mitochondrial origin. Nucleic Acids Res 40, 314-322
    9. Chiu, W. C., Chang, C. P., Wen, W. L., Wang, S. W., and Wang, C. C. (2010) Schizosaccharomyces pombe possesses two paralogous valyl-tRNA synthetase genes of mitochondrial origin. Mol Biol Evol 27, 1415-1424
    10. Huang, H. Y., Kuei, Y., Chao, H. Y., Chen, S. J., Yeh, L. S., and Wang, C. C. (2006) Cross-species and cross-compartmental aminoacylation of isoaccepting tRNAs by a class II tRNA synthetase. J Biol Chem 281, 31430-31439
    11. Frechin, M., Senger, B., Braye, M., Kern, D., Martin, R. P., and Becker, H. D. (2009) Yeast mitochondrial Gln-tRNA(Gln) is generated by a GatFAB-mediated transamidation pathway involving Arc1p-controlled subcellular sorting of cytosolic GluRS. Genes Dev 23, 1119-1130
    12. Eriani, G., Delarue, M., Poch, O., Gangloff, J., and Moras, D. (1990) Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs. Nature 347, 203-206
    13. Schimmel, P. (1987) Aminoacyl tRNA synthetases: general scheme of structure-function relationships in the polypeptides and recognition of transfer RNAs. Annu Rev Biochem 56, 125-158
    14. Ibba, M., Morgan, S., Curnow, A. W., Pridmore, D. R., Vothknecht, U. C., Gardner, W., Lin, W., Woese, C. R., and Soll, D. (1997) A euryarchaeal lysyl-tRNA synthetase: resemblance to class I synthetases. Science 278, 1119-1122
    15. Mazauric, M. H., Reinbolt, J., Lorber, B., Ebel, C., Keith, G., Giege, R., and Kern, D. (1996) An example of non-conservation of oligomeric structure in prokaryotic aminoacyl-tRNA synthetases. Biochemical and structural properties of glycyl-tRNA synthetase from Thermus thermophilus. Eur J Biochem 241, 814-826
    16. Ostrem, D. L., and Berg, P. (1970) Glycyl-tRNA synthetase: an oligomeric protein containing dissimilar subunits. Proc Natl Acad Sci U S A 67, 1967-1974
    17. Shiba, K., Schimmel, P., Motegi, H., and Noda, T. (1994) Human glycyl-tRNA synthetase. Wide divergence of primary structure from bacterial counterpart and species-specific aminoacylation. J Biol Chem 269, 30049-30055
    18. Nada, S., Chang, P. K., and Dignam, J. D. (1993) Primary structure of the gene for glycyl-tRNA synthetase from Bombyx mori. J Biol Chem 268, 7660-7667
    19. Bullard, J. M., Cai, Y. C., Demeler, B., and Spremulli, L. L. (1999) Expression and characterization of a human mitochondrial phenylalanyl-tRNA synthetase. J Mol Biol 288, 567-577
    20. Mazauric, M. H., Roy, H., and Kern, D. (1999) tRNA glycylation system from Thermus thermophilus. tRNAGly identity and functional interrelation with the glycylation systems from other phylae. Biochemistry 38, 13094-13105
    21. Marechal-Drouard, L., Small, I., Weil, J. H., and Dietrich, A. (1995) Transfer RNA import into plant mitochondria. Methods Enzymol 260, 310-327
    22. Mazauric, M. H., Keith, G., Logan, D., Kreutzer, R., Giege, R., and Kern, D. (1998) Glycyl-tRNA synthetase from Thermus thermophilus--wide structural divergence with other prokaryotic glycyl-tRNA synthetases and functional inter-relation with prokaryotic and eukaryotic glycylation systems. Eur J Biochem 251, 744-757
    23. Chen, S. J., Lee, C. Y., Lin, S. T., and Wang, C. C. (2011) Rescuing a dysfunctional homologue of a yeast glycyl-tRNA synthetase gene. ACS Chem Biol 6, 1182-1187
    24. Turner, R. J., Lovato, M., and Schimmel, P. (2000) One of two genes encoding glycyl-tRNA synthetase in Saccharomyces cerevisiae provides mitochondrial and cytoplasmic functions. J Biol Chem 275, 27681-27688
    25. Chen, S. J., Wu, Y. H., Huang, H. Y., and Wang, C. C. (2012) Saccharomyces cerevisiae possesses a stress-inducible glycyl-tRNA synthetase gene. PLoS One 7, e33363
    26. Liao, C. C., Lin, C. H., Chen, S. J., and Wang, C. C. (2012) Trans-kingdom rescue of Gln-tRNAGln synthesis in yeast cytoplasm and mitochondria. Nucleic Acids Res 40, 9171-9181
    27. Chen, S. J., Ko, C. Y., Yen, C. W., and Wang, C. C. (2009) Translational efficiency of redundant ACG initiator codons is enhanced by a favorable sequence context and remedial initiation. J Biol Chem 284, 818-827
    28. Fersht, A. R., Ashford, J. S., Bruton, C. J., Jakes, R., Koch, G. L., and Hartley, B. S. (1975) Active site titration and aminoacyl adenylate binding stoichiometry of aminoacyl-tRNA synthetases. Biochemistry 14, 1-4
    29. Duchene, A. M., Peeters, N., Dietrich, A., Cosset, A., Small, I. D., and Wintz, H. (2001) Overlapping destinations for two dual targeted glycyl-tRNA synthetases in Arabidopsis thaliana and Phaseolus vulgaris. J Biol Chem 276, 15275-15283
    30. Nameki, N., Tamura, K., Asahara, H., and Hasegawa, T. (1997) Recognition of tRNA(Gly) by three widely diverged glycyl-tRNA synthetases. J Mol Biol 268, 640-647
    31. Chang, C. P., Lin, G., Chen, S. J., Chiu, W. C., Chen, W. H., and Wang, C. C. (2008) Promoting the formation of an active synthetase/tRNA complex by a nonspecific tRNA-binding domain. J Biol Chem 283, 30699-30706
    32. Whelihan, E. F., and Schimmel, P. (1997) Rescuing an essential enzyme-RNA complex with a non-essential appended domain. EMBO J 16, 2968-2974
    33. Chiu, W. C., Chang, C. P., and Wang, C. C. (2009) Evolutionary basis of converting a bacterial tRNA synthetase into a yeast cytoplasmic or mitochondrial enzyme. J Biol Chem 284, 23954-23960
    34. Toth, M. J., and Schimmel, P. (1986) Internal structural features of E. coli glycyl-tRNA synthetase examined by subunit polypeptide chain fusions. J Biol Chem 261, 6643-6646
    35. Williams, J., Osvath, S., Khong, T. F., Pearse, M., and Power, D. (1995) Cloning, sequencing and bacterial expression of human glycine tRNA synthetase. Nucleic Acids Res 23, 1307-1310
    36. Andreev, D. E., Hirnet, J., Terenin, I. M., Dmitriev, S. E., Niepmann, M., and Shatsky, I. N. (2012) Glycyl-tRNA synthetase specifically binds to the poliovirus IRES to activate translation initiation. Nucleic Acids Res 40, 5602-5614
    37. Park, M. C., Kang, T., Jin, D., Han, J. M., Kim, S. B., Park, Y. J., Cho, K., Park, Y. W., Guo, M., He, W., Yang, X. L., Schimmel, P., and Kim, S. (2012) Secreted human glycyl-tRNA synthetase implicated in defense against ERK-activated tumorigenesis. Proc Natl Acad Sci U S A 109, E640-647
    38. Antonellis, A., Ellsworth, R. E., Sambuughin, N., Puls, I., Abel, A., Lee-Lin, S. Q., Jordanova, A., Kremensky, I., Christodoulou, K., Middleton, L. T., Sivakumar, K., Ionasescu, V., Funalot, B., Vance, J. M., Goldfarb, L. G., Fischbeck, K. H., and Green, E. D. (2003) Glycyl tRNA synthetase mutations in Charcot-Marie-Tooth disease type 2D and distal spinal muscular atrophy type V. Am J Hum Genet 72, 1293-1299
    39. Burbaum, J. J., and Schimmel, P. (1991) Structural relationships and the classification of aminoacyl-tRNA synthetases. J Biol Chem 266, 16965-16968
    40. Huang, H. Y., Tang, H. L., Chao, H. Y., Yeh, L. S., and Wang, C. C. (2006) An unusual pattern of protein expression and localization of yeast alanyl-tRNA synthetase isoforms. Mol Microbiol 60, 189-198
    41. Mirande, M. (1991) Aminoacyl-tRNA synthetase family from prokaryotes and eukaryotes: structural domains and their implications. Prog Nucleic Acid Res Mol Biol 40, 95-142
    42. Frugier, M., Moulinier, L., and Giege, R. (2000) A domain in the N-terminal extension of class IIb eukaryotic aminoacyl-tRNA synthetases is important for tRNA binding. EMBO J 19, 2371-2380
    43. Wang, C. C., and Schimmel, P. (1999) Species barrier to RNA recognition overcome with nonspecific RNA binding domains. J Biol Chem 274, 16508-16512
    44. Havrylenko, S., Legouis, R., Negrutskii, B., and Mirande, M. (2010) Methionyl-tRNA synthetase from Caenorhabditis elegans: a specific multidomain organization for convergent functional evolution. Protein Sci 19, 2475-2484
    45. Wu, H., Nada, S., and Dignam, J. D. (1995) Analysis of truncated forms of Bombyx mori glycyl-tRNA synthetase: function of an N-terminal structure in RNA binding. Biochemistry 34, 16327-16336
    46. Simos, G., Segref, A., Fasiolo, F., Hellmuth, K., Shevchenko, A., Mann, M., and Hurt, E. C. (1996) The yeast protein Arc1p binds to tRNA and functions as a cofactor for the methionyl- and glutamyl-tRNA synthetases. EMBO J 15, 5437-5448
    47. Havrylenko, S., Legouis, R., Negrutskii, B., and Mirande, M. (2011) Caenorhabditis elegans evolves a new architecture for the multi-aminoacyl-tRNA synthetase complex. J Biol Chem 286, 28476-28487
    48. Ray, P. S., Sullivan, J. C., Jia, J., Francis, J., Finnerty, J. R., and Fox, P. L. (2011) Evolution of function of a fused metazoan tRNA synthetase. Mol Biol Evol 28, 437-447
    49. Jia, J., Arif, A., Ray, P. S., and Fox, P. L. (2008) WHEP domains direct noncanonical function of glutamyl-Prolyl tRNA synthetase in translational control of gene expression. Mol Cell 29, 679-690
    50. He, W., Zhang, H. M., Chong, Y. E., Guo, M., Marshall, A. G., and Yang, X. L. (2011) Dispersed disease-causing neomorphic mutations on a single protein promote the same localized conformational opening. Proc Natl Acad Sci U S A 108, 12307-12312
    51. Senger, B., Aphasizhev, R., Walter, P., and Fasiolo, F. (1995) The presence of a D-stem but not a T-stem is essential for triggering aminoacylation upon anticodon binding in yeast methionine tRNA. J Mol Biol 249, 45-58
    52. Sakurai, M., Ohtsuki, T., and Watanabe, K. (2005) Modification at position 9 with 1-methyladenosine is crucial for structure and function of nematode mitochondrial tRNAs lacking the entire T-arm. Nucleic Acids Res 33, 1653-1661
    53. Chimnaronk, S., Gravers Jeppesen, M., Suzuki, T., Nyborg, J., and Watanabe, K. (2005) Dual-mode recognition of noncanonical tRNAs(Ser) by seryl-tRNA synthetase in mammalian mitochondria. EMBO J 24, 3369-3379
    54. Shimada, N., Suzuki, T., and Watanabe, K. (2001) Dual mode recognition of two isoacceptor tRNAs by mammalian mitochondrial seryl-tRNA synthetase. J Biol Chem 276, 46770-46778
    55. Suematsu, T., Sato, A., Sakurai, M., Watanabe, K., and Ohtsuki, T. (2005) A unique tRNA recognition mechanism of Caenorhabditis elegans mitochondrial EF-Tu2. Nucleic Acids Res 33, 4683-4691
    56. Arita, M., Suematsu, T., Osanai, A., Inaba, T., Kamiya, H., Kita, K., Sisido, M., Watanabe, Y., and Ohtsuki, T. (2006) An evolutionary 'intermediate state' of mitochondrial translation systems found in Trichinella species of parasitic nematodes: co-evolution of tRNA and EF-Tu. Nucleic Acids Res 34, 5291-5299

    QR CODE
    :::